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Figure 1: Pressure for a subduction model using Q1-P0 elements
and averaged pressures. Notice that, even when averaging the
pressures, there is an even-odd artifact centered on the bottom.
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Subtract the Problem Away

A side effect of this scheme is that boundary conditions become more 
complicated. For example, consider a simulation where the bottom 
boundary is open, allowing material to freely flow in and out.

Normally, we could apply a stress at the bottom to counteract the 
weight of the material. Then, as shown in Figure 5, when material piles 
up, the weight of the material will overcome the stress boundary, and 
material will flow out. Conversely, when material thins out, the stress 
boundary will push new material into the simulation.

However, the nominal density profile has been subtracted away, so 
there is no need to counteract the hydrostatic pressure.  If material 
piles up, then the excess will not be subtracted away.  That excess 
material then exerts a force that pushes the material down and 
material flows out as expected.

The converse is not true, though. If the material thins out, then there 
is no force on the bottom pushing the material up. We are still 
subtracting the nominal profile, so there should be a negative pressure 
resulting from the negative density above the simulation. To model 
this, we apply a stress to the top of the domain that is equal to the 
nominal pressure from the nominal density. As shown in Figure 6, that 
pulls up the material when it sinks too low.

With complex geometries, it is not always clear how to compute a 
nominal density profile. For example, Figure 7 shows a simulation of a 
tabletop extension experiment over time. The side is pulled slowly 
enough such that hydrostatic pressure is much larger than dynamic  
pressure. The material is suspended in an asthenospheric fluid that 
flows up to fill the void as the mantle and crust thin. The weak zone 
serves as a seed for yielding. The asthenosphere is more dense than 
the mantle, which is more dense than the crust and weak zone.

A reasonable scheme for subtracting out the hydrostatic pressure is to 
subtract the profile of the asthenosphere, mantle, and crust. We can 
not vary the profile in space, because that would cause dynamics that 
are then not accounted for. So the weak zone will not be exactly 
subtracted, but as the simulation shows, this does not seem to cause 
any problems.

As the crust thins, the heavy asthenospheric material flows up to fill in 
the void left by the weak zone. However, this triggers an interesting 
instability. The heavier material creates an excess pressure. This 
pressure makes the       term larger. There is then a coupling which 
causes even more pressure, which increases      ,  and so on.

The fix for this is to change the nominal density profile so that it is all 
made up of the heavier material. The mechanism behind the 
instability and the workaround is not completely clear.

The techniques presented here make it possible to simulate highly 
nonlinear Stokes flow problems with the relatively simple Q1-Q1 finite 
elements. This allows us to use particle methods in a straightforward 
manner. That, in turn, lets us capture strain history, allowing us to 
follow simulations with large deformations with no diffusion.

With that said, the introduction of the nominal density profile adds as 
many problems as it solves. Getting all of the parameters just right 
can be an arduous exercise.

Many finite element codes developed for crustal scale 
problems use Q1-P0 elements. This scheme has a well known 
checkerboard instability. Figure 1 shows a rather mild 
example.

When the problem becomes strongly non-linear, such as with 
yielding rheologies, this instability can cause the method to 
break down.

There have been a number of fixes including higher order 
elements, macro-elements, and higher order derivatives. 
They are relatively complex and difficult to integrate with 
particle based methods for tracking properties of particles 
like accumulated strain, needed for yielding rheologies.

Dohrmann and Bochev (2000) introduced a relatively simple 
scheme using Q1-Q1 elements and a stabilization term that 
looks like a compressibility. Specifically, the continuity 
equation is modified to become

where
            

   is the velocity,   is the pressure,   is the viscosity,     is the 
element and          is the basis function. Thus the 
compressiblity is scaled by the viscosity and is proportional 
to the mass matrix and the element area.  So as the 
resolution increases, the compressibility converges to zero, 
giving us the original incompressible flow. For problems the 
size of a sandbox, this method works quite well. Figure 2 
show a sandbox model with narrow shear zones and high 
viscosity contrasts. 

Unfortunately, when the method is applied to the lithosphere, 
serious problems arise. In our sandbox example, the pressure 
is dominated by the dynamic pressure, not the hydrostatic 
pressure. The dynamic pressure, in turn, is created by the 
motions arising from the velocities. Because of this link 
between the velocity and the pressure, the overall magnitude 
of the extra       term tends to be relatively small.

In lithospheric problems, on the other hand, the hydrostatic 
pressure can be several orders of magnitude larger than the 
dynamic pressure.  Since the hydrostatic pressure is not linked 
to the velocity, it is easy for the extra term       to be far too 
large, even though     itself is small and gets smaller as 
resolution increases. Figure 3 shows how the dynamics of a 
simple extension model can get completely disrupted.

An obvious way to fix this is to subtract out the hydrostatic part 
of the pressure.  We do this by subtracting out a nominal 
density profile. This removes the hydrostatic pressure 
associated with the nominal density profile. When computing 
the true pressure (e.g., for yielding calculations or 
visualization) we have to remember to add it back in.

As will be shown later, it is important to make a decent choice 
for the density profile, although it need not be perfect. For 
simple geometries, this is relatively easy to do and results in a 
better solution, as shown in Figure 4.

Abstract: We investigate the techniques needed to make a stable, robust method for solving large, 3D, highly 
nonlinear lithospheric problems.
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Figure 2: Accumulated strain for the 2004 Geomod extension benchmark

Figure 3: A simple box of viscous material being pulled on the right
side while the left is held fixed. The motion is primarily straight down
as the material collapses on itself because of spurious compressibility. 

Figure 4: The same setup as in Figure 3, but with a nominal density
profile subtracted away. The spurious compressibility has all but 
disappeared.
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Figure 8: Simulation of a tabletop model with multiple layers. As the material
extends, the weak zone thins more quickly, allowing the dense asthenosphere to
fill the void. If the nominal density profile is set up to reflect the differing densities
in the crust, mantle, and asthenosphere, then an instability occurs where the
asthenosphere is filling in the void.  If, instead, the profile assumes that the
dense asthenosphere is the only material, then the simulation succeeds. Model
courtesy of John Sheehan. 


