
Correct Finite Difference Solutions to Variable Viscosity
Stokes Flow with Sharp Interfaces

Computational Infrastructure for Geodynamics (CIG) is an
NSF funded, community governed center that develops,
maintains, and distributes high performance parallel software
for geophysics. In response to requests from the community,
CIG is developing Gamr, a new Adaptive Mesh Refinement (AMR)
code for Tectonics and Mantle Convection.

The idea of AMR is to have multiple grids with different
resolutions. There is a coarse grid which covers the whole
simulation, and then there are finer grids which only cover
select regions as in Figure 1.

Walter Landry
Computational Infrastructure for Geodynamics

walter@geodynamics.org

Immersed Interface Method

We will use the Immersed Interface Method (IIM) to obtain convergent
results. Other methods, such as Ghost Fluids and Immersed/Embedded
Boundaries ignore errors in some terms in favor of simplicity of
implementation. There are many variants of IIM (EJIIM, DIIM, CIM, FIIM,
MIIM), but they all work by modifying numerical derivatives by
subtracting out spurious terms that come from a sharp interface.

Most applications of IIM to Stokes assume constant viscosity. In order
to apply the proper conditions at the interface, we must use, as
a fundamental quantity, the velocity scaled by the viscosity

Figure 1: Multiple grids in an AMR simulation.

Solver

To actually solve the Stokes flow, we use multigrid with the smoother
developed by Tackley (2008). This gives us good answers to some
standard problems such as a circular inclusion under shear.

Introduction

+ + =

NSF Award
EAR-0949446

Unfortunately, in the presence of sharp viscosity interfaces, such as
between a subducting slab and the mantle, traditional finite
difference methods result in an error that increases as the grid
becomes finer. So the AMR algorithm will try to create an infinitely
fine grid around the interface, resulting in an infinitely large error.
Figure 3 shows the pressure solution for a sinking block in 2D and 3D.

In the current version, Gamr models solid earth flow by using the
finite difference method to solve the Stokes equations.

AMR algorithms generally create finer grids where the error is large.
Since the error generally decreases with resolution, this will reduce
the global error while only needing to apply effort in small regions.

Solid Earth Modeling and AMR

Figure 2: Pressure for circular inclusion under pure shear

geodynamics.org

Albers (2000) previously found solutions to variable viscosity Stokes
flow using finite difference AMR on a single processor. We use the
SAMRAI AMR library to enable 2D and 3D finite difference AMR
solutions in parallel. Albers noted that interpolating boundary
conditions from the coarse level to the fine level requires some care.
Unless the boundary conditions are interpolated with quadratic
stencils, the error in the finer grids will end up being no better than
if we had just used a coarse grid.

Albers applied Dirichlet boundary conditions on the ingoing/outgoing
velocity fields on the fine grids. This can be problematic, since
compatibilty with the continuity equation is not guaranteed. Instead
we apply stress conditions to the ingoing/outgoing velocities and
Dirichlet conditions to the transverse velocities.

Figure 2: Pressure solutions for high viscosity blocks sinking in
a low viscosity medium

Using this to write the Stokes Equations gives

The viscosity only appears explicitly inside a logarithm. Some normally
difficult test problems where the viscosity rises exponentially with
height thus become relatively trivial. Also, is better behaved
numerically than the velocity, since where the viscosity is large, the
velocity is small, and vice versa.

Given this, we can write, for example, the jump conditions for and its
derivative tangential to the interface

where brackets [] denote the jump across the interface. We can then
write a correction to a finite difference derivative as

where h is the grid spacing and is the distance to the interface of
point on the "other" side of the interface.

The algorithm then becomes, start with an initial guess for the velocity
 . Use this to compute jump conditions and a new solution. Use the
new solution to get new jump conditions and iterate.

{

need derivative here
interface {

