SDPB:
Bigger Models
and Faster Solutions

Walter Landry
Caltech



What is SDPB?

 Open source, arbitrary precision, parallelized
semidefinite program solver, designed for
the conformal bootstrap.

e Builds on Linux, Mac, and Windows.

 Python wrappers are available.



SDPB Structure

* From a computer science perspective, much
of what SDPB does is operations on
iIndependent blocks of matrices.

 The results of these independent operations
are combined into a single, not overly large
matrix Q.

 What makes this exercise difficult and slow
Is the need for extremely high precision
arithmetic.



Speeding up SDPB
 SDPB Is already parallelized with OpenMP
 This works pretty well, but only scales up to
a single hardware node.
* This limits the kind of problems you can
work on. Either because they take too long
or they require too much memory.



Distributed Parallelism

 The usual solution iIs to distribute the
computation across multiple
network-connected nodes.

 Good performance requires restructuring
the code. You have to be very conscious of
when communication happens.



Parallelism is Complicated

e |t gets really complicated really fast.

e Each jump in the number of cores (1 to 10,
10 to 100, 100 to 1000) requires significant
effort.

 This is why you generally want to use a
library that has already figured many of
the Issues.



Elemental

e A library oriented towards
operations on distributed, dense
matrices.

* |t has been run on machines with thousands
of cores.

e Comes with support for arbitrary precision
arithmetic using MPFR.

| made a fork which uses the faster GMP
library.




Distributed SDPB

* | have modified SDPB to use Elemental for
linear algebra.

* The operations on the conformal blocks
can all run on separate, distributed cores.

 The assignment of blocks to cores is
extremely simple (round robin).

 This should work well enough when there
are many more blocks than cores.



Scaling Q Computation

 For my benchmark, this takes about 1/3 of
the total run time.

|t Involves squaring a long, skinny matrix.

e It is not all that simple to parallelize, but
there has been lots of work by many clever
people to make linear algebra fast.



Faster?
e On my 4-core laptop.
e Q computation runs within 5% of the
OpenMP version.
 Overall it Is a bit slower (15%).
 The parts that should scale perfectly
do not due to CPU scaling.
* The next step is to run on cluster hardware.



Limits on Parallelism

 The Ising model has 1264 blocks.

 With the right machine, we would like those
parts to run 1264 times faster.

 But not all blocks are the same size.



Intelligently Allocating Cores

e However, larger blocks can still benefit from
using multiple cores.

* Then you have to figure out how to allocate
cores to nodes.

* You do not want to split a block amongst
cores that belong to different nodes.



Bigger is Better

e For 1x32 and 2x32 cores, ratio of time to
square a matrix
0224 x 368 elements: 1.15

36896 x 1536 elements: 1.94
2.0 Is perfect scaling



Other Approaches

e |t Is odd that we have to use such extreme
precision to get useful answers.

e |s there a way to subtract off the infinities
so that the matrices are better conditioned?



Scaling Input Files

Each core reads the entire XML input files
Into custom data structures in memory.
These data structures are then converted
into GMP numbers and discarded.

For large input files, this ephemeral per-core
memory reguirement can be larger than
what is needed for the actual computation.
My plan is to change to a different parser
(libxml27?) that use incremental parsing.



Open

Development

e The code is available on Github and Gitlab
https://github.com/davidsd/sdpb/

elemental
https://git

branch
Lab.com/bootstrapcollaboration

/elemental

no warnings branch
e Discussion is on a public mailing list

https://groups.google.com/forum/#!forum
/bootstrap-collaboration-software



