
SDPB:
Bigger Models

and Faster Solutions

Walter Landry

What is SDPB?
• Open source, arbitrary precision, parallelized

 semidefinite program solver, designed for

 the conformal bootstrap.

• Builds on Linux, Mac, and Windows.

• Python wrappers are available.

SDPB Structure
• From a computer science perspective, much

 of what SDPB does is operations on

 independent blocks of matrices.

• The results of these independent operations

 are combined into a single, not overly large

 matrix Q.

• What makes this exercise difficult and slow

 is the need for extremely high precision

 arithmetic.

Speeding up SDPB
• SDPB is already parallelized with OpenMP

• This works pretty well, but only scales up to

 a single hardware node.

• This limits the kind of problems you can

 work on. Either because they take too long

 or they require too much memory.

Distributed Parallelism
• The usual solution is to distribute the

 computation across multiple

 network-connected nodes.

• Good performance requires restructuring

 the code. You have to be very conscious of

 when communication happens.

Parallelism is Complicated
• It gets really complicated really fast.

• Each jump in the number of cores (1 to 10,

 10 to 100, 100 to 1000) requires significant

 effort.

• This is why you generally want to use a

 library that has already figured many of

 the issues.

Elemental
• A library oriented towards

 operations on distributed, dense

 matrices.

• It has been run on machines with thousands

 of cores.

• Comes with support for arbitrary precision

 arithmetic using MPFR.

• I made a fork which uses the faster GMP

 library.

Distributed SDPB
• I have modified SDPB to use Elemental for

 linear algebra.

• The operations on the conformal blocks

 can all run on separate, distributed cores.

• The assignment of blocks to cores is

 extremely simple (round robin).

• This should work well enough when there

 are many more blocks than cores.

Scaling Q Computation
• For my benchmark, this takes about 1/3 of

 the total run time.

• It involves squaring a long, skinny matrix.

• It is not all that simple to parallelize, but

 there has been lots of work by many clever

 people to make linear algebra fast.

Faster?
• On my 4-core laptop.

 • Q computation runs within 5% of the

 OpenMP version.

 • Overall it is a bit slower (15%).

 • The parts that should scale perfectly

 do not due to CPU scaling.

• The next step is to run on cluster hardware.

Limits on Parallelism
• The Ising model has 1264 blocks.

• With the right machine, we would like those

 parts to run 1264 times faster.

• But not all blocks are the same size.

Intelligently Allocating Cores
• However, larger blocks can still benefit from

 using multiple cores.

• Then you have to figure out how to allocate

 cores to nodes.

• You do not want to split a block amongst

 cores that belong to different nodes.

Bigger is Better
• For 1x32 and 2x32 cores, ratio of time to

 square a matrix

 9224 x 368 elements: 1.15

 36896 x 1536 elements: 1.94

 2.0 is perfect scaling

Other Approaches
• It is odd that we have to use such extreme

 precision to get useful answers.

• Is there a way to subtract off the infinities

 so that the matrices are better conditioned?

Scaling Input Files
• Each core reads the entire XML input files

 into custom data structures in memory.

• These data structures are then converted

 into GMP numbers and discarded.

• For large input files, this ephemeral per-core

 memory requirement can be larger than

 what is needed for the actual computation.

• My plan is to change to a different parser

 (libxml2?) that use incremental parsing.

Open Development
• The code is available on Github and Gitlab
 https://github.com/davidsd/sdpb/

 elemental branch

 https://gitlab.com/bootstrapcollaboration

 /elemental

 no_warnings branch

• Discussion is on a public mailing list

 https://groups.google.com/forum/#!forum
 /bootstrap-collaboration-software

