
Implementing a High Performance Tensor

Library

Walter Landry

University of Utah

University of California, San Diego

Terascale Supernova Initiative

wlandry@ucsd.edu

Overview

• Template methods have opened up a new way of building C++ libraries. These meth-

ods allow the libraries to combine the seemingly contradictory qualities of ease of use and

uncompromising efficiency.

• However, libraries that use these methods are notoriously difficult to develop.

• In this talk, I’m going to describe the design of a friendly, high performance tensor library.

• We find that template methods allow us to create a powerful, flexible library, including

features not found in other libraries, but performance did suffer.

Introduction to Tensors

• Tensors are used in a number of scientific fields, such as geology, mechanical engineering,

and astronomy. They can be thought of as generalizations of vectors and matrices.

• Consider multiplying a vector P by a matrix T , yielding a vector Q



Qx

Qy

Qz


 =




Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz







Px

Py

Pz




Writing the equations out explicitly

Qx = TxxPx + TxyPy + TxzPz

Qy = TyxPx + TyyPy + TyzPz

Qz = TzxPx + TzyPy + TzzPz

• Alternately, we can write it as

Qx =
∑

j=x,y,z

TxjPj

Qy =
∑

j=x,y,z

TyjPj

Qz =
∑

j=x,y,z

TzjPj

or even more simply as

Qi =
∑

j=x,y,z

TijPj,

where the index i is understood to stand for x, y, and z in turn.

• In this example, Pj and Qi are vectors, but could also be called rank 1 tensors (because
they have one index). Tij is a matrix, or a rank 2 tensor. The more indices, the higher the
rank.

• So the Riemann tensor in General Relativity, Rijkl, is a rank 4 tensor, but can also be
envisioned as a matrix of matrices.

Summation Notation

• Einstein introduced the convention that if an index appears in two tensors that multiply

each other, then that index is implicitly summed.

• Using this Einstein summation notation, the matrix-vector multiplication becomes simply

Qi = TijPj

This mostly removes the need to write the summation symbol
∑

j=x,y,z. This implicit

summation is also called contraction.

• Of course, now that the notation has become so nice and compact, it becomes easy to write

much more complicated formulas such as the definition of the Riemann tensor

Ri
jkl = dGi

jkl − dGi
lkj + Gm

jkGi
ml −Gm

lkGi
mj.

Expressing this in Code

• Now consider expressing this equation in code. We could use multidimensional arrays and

start writing lots of loops

for(int i=0;i<3;++i)
for(int j=0;j<3;++j)

for(int k=0;k<3;++k)
for(int l=0;l<3;++l)

{
R[i][j][k][l]=dG[i][j][k][l]

- dG[i][l][k][j];
for(int m=0;m<3;++m)
R[i][j][k][l]+=G[m][j][k]*G[i][m][l]

- G[m][l][k]*G[i][m][j];
}

• This is a dull, mechanical, error-prone task, exactly the sort of thing computers are sup-

posed to do for you. This style of programming is often referred to as C-tran, since it is

programming in C++ but with all of the limitations of Fortran 77.

• We would like to write something like

R(i,j,k,l)=dG(i,j,k,l) - dG(i,l,k,j)
+ G(m,j,k)*G(i,m,l) - G(m,l,k)*G(i,m,j);

and have the computer set all of the elements and do all of the contractions for you.

Implementation

• To illustrate our basic design, we start with rank 1 tensors. We define a class Tensor1 with

three elements corresponding to the x, y, and z components.

• We define operator()(int) to return these elements, so if we have a Tensor1 named A, A(0)

gives the x element, A(1) gives the y element, and A(2) gives the z element.

• The outline of this class so far is

class Tensor1
{

double data0, data1, data2;
public:

double & operator(int N)
{
return (N==0 ? data0 : (N==1 ? data1 : data2));

}
.
.
.

• Note that there is no range check on the index, so A(1138) will return the same result as

A(2). We could introduce a checked version using #ifdef DEBUG macros, but it has not been

done yet.

• We want to support the notation A(i)=B(i), where i is implicitly summed over 0, 1, and 2.

• To do this, we use expression templates, because they transparently provide reasonably high

performance.

• We define two auxiliary classes, Index and Tensor1 Expr.

• Index is used to tell the compiler what the index of the Tensor1 is. It uses a template

parameter to store this information, so it is otherwise empty. The definition of Index is thus

rather simple

template<char i>
class Index{};

• On the other hand, Tensor1 Expr is designed to hold any kind of expression that eventually

simplifies to a rank 1 tensor. For example, the expressions A(i) and B(j)*T(j,i) (which has

an implicit summation over j) both simplify to a tensor with one index.

• To accomplish this, Tensor1 Expr has two template parameters that tell it 1) what kind of

object it contains, and 2) what it’s index is.

• The definition for Tensor1 Expr is then

template<class A, char i>
class Tensor1 Expr
{

A iter;
public:

Tensor1 Expr(A &a): iter(a) {}
double operator()(const int N) const

{
return iter(N);

}
};

• To create a Tensor1 Expr, we overload the function operator to return a Tensor1 Expr.

template<char i>
Tensor1 Expr<Tensor1,i> operator()(Index<i> index)

{
return Tensor1 Expr<Tensor1,i>(*this);

}

• An example of its use is

Index<’i’> i;
Tensor1 A;
A(i);

The statement A(i); creates a Tensor1 Expr<Tensor1,’i’>.

• This just illustrates the simplest case, where a Tensor1 Expr holds a Tensor1.

• To assign one tensor to another, we want the syntax to be A(i)=B(i). This implies that we

are actually assigning one Tensor1 Expr to another.

• So we have to specialize Tensor1 Expr to the case where it contains a Tensor1.

template<char i>
class Tensor1 Expr<Tensor1, i>
{

Tensor1 &iter;
public:

Tensor1 Expr(Tensor1 &a): iter(a) {}
double & operator()(const int N)

{
return iter(N);

}
template<class B>
const Tensor1 Expr<Tensor1,i> &

operator=(const Tensor1 Expr<B,i> &result)
{

iter(0)=result(0);
iter(1)=result(1);
iter(2)=result(2);
return *this;

}
const Tensor1 Expr<Tensor1,i> &

operator=(const Tensor1 Expr<Tensor1,i> &result)
{

return operator=<Tensor1>(result);
}

};

• This is almost the same as the general Tensor1 Expr. The only differences are that it defines

the equals operator, and it takes a reference to the object that it contains (Tensor1 &iter),

instead of a copy (A iter). The second change is needed in order for assignment to work.

Our example now becomes

Index<’i’> i;
Tensor1 A, B;
A(i)=B(i);

• The last statement creates two Tensor1 Expr<Tensor1,’i’>’s, one for A and one for B. It

then assigns the elements of B to the elements of A.

• If we had tried something like

Index<’i’> i;
Index<’j’> j;
Tensor1 A, B;
A(i)=B(j);

then the compiler would not have found a suitable operator=().

• This provides strong compile-time checking of tensor expressions.

• Generalizing this to higher rank tensors is straightforward.

– We define the appropriate TensorN class to hold more elements (3N).

– We overload operator()(int,int,...) and operator()(Index,Index,...).

– We define a TensorN Expr<> class and overload its operator()(int,int,...). We spe-

cialize it for TensorN’s and define an equal’s operator.

Arithmetic Operators

• Now we want to do something really useful. We want to add two Tensor1’s together. This

is where expression templates really comes into play.

• We do this by creating a helper class Tensor1 plus Tensor1.

• The helper class is defined as

template<class A, class B, char i>
class Tensor1 plus Tensor1
{

const Tensor1 Expr<A,i> iterA;
const Tensor1 Expr<B,i> iterB;

public:
double operator()(const int N) const

{
return iterA(N)+iterB(N);

}
Tensor1 plus Tensor1(const Tensor1 Expr<A,i> &a,

const Tensor1 Expr<B,i> &b): iterA(a),
iterB(b) {}

};

• This helper class contains the two objects that are being added. When we use

operator()(int) to ask for an element, it returns the sum of the two objects.

• This class is used in the definition of operator+(Tensor1 Expr,Tensor1 Expr)

template<class A, class B, char i>
inline Tensor1 Expr<const Tensor1 plus Tensor1

<const Tensor1 Expr<A,i>,const Tensor1 Expr<B,i>,i>,i>
operator+(const Tensor1 Expr<A,i> &a,

const Tensor1 Expr<B,i> &b)
{

typedef const Tensor1 plus Tensor1<const Tensor1 Expr<A,i>,
const Tensor1 Expr<B,i>,i> TensorExpr;

return Tensor1 Expr<TensorExpr,i>(TensorExpr(a,b));
}

• Note that the indices of the two Tensor1 Expr’s have to match up, or they won’t have the

same char template parameter.

• This is another example of strict compile-time checking for validity of tensor expressions.

• To make more sense of this, let’s consider an example

Index<’i’> i;
Tensor1 A, B, C;
A(i)=B(i)+C(i);

• The individual expressions A(i), B(i) and C(i) all create a Tensor1 Expr<Tensor1,’i’>.

• The plus operator creates Tensor1 Expr<Tensor1 plus Tensor1<Tensor1,Tensor1,’i’>,’i’>.

• The equals operator then asks for operator()(0), operator()(1), and operator()(2) from

this compound object.

• The Tensor1 Expr<> object passes these calls to it’s contained object, the

Tensor1 plus Tensor1.

• The Tensor1 plus Tensor1 object returns the sum of the calls to the two

objects (Tensor1 Expr<Tensor1,’i’>) it contains.

• The Tensor1 Expr’s pass the call onto the Tensor1, and we get the results.

• The code for subtraction is exactly the same with + replaced with - and plus replaced

with minus .

• The * operator has a very different meaning which depends on what the indices are. For

example, A(i)*B(j) creates a new Tensor2 with indices of i and j.

• To do this, we first need a helper class

template<class A, class B, char i, char j>
class Tensor1 times Tensor1
{

const Tensor1 Expr<A,i> iterA;
const Tensor1 Expr<B,j> iterB;

public:
Tensor1 times Tensor1(const Tensor1 Expr<A,i> &a,

const Tensor1 Expr<B,j> &b)
: iterA(a), iterB(b) {}

double operator()(const int N1, const int N2) const
{

return iterA(N1)*iterB(N2);
}

};

• Then we overload operator*(Tensor1 Expr,Tensor1 Expr)

template<class A, class B, char i, char j> inline
Tensor2 Expr<const Tensor1 times Tensor1

<const Tensor1 Expr<A,i>,
const Tensor1 Expr<B,j>,i,j>,i,j>

operator*(const Tensor1 Expr<A,i> &a,
const Tensor1 Expr<B,j> &b)

{
typedef const Tensor1 times Tensor1

<const Tensor1 Expr<A,i>,
const Tensor1 Expr<B,j>,i,j> TensorExpr;

return Tensor2 Expr<TensorExpr,i,j>(TensorExpr(a,b));
}

Implicit Summation

• The preceding work is not really that interesting. Blitz already implements something almost

like this.

• What really distinguishes this library from others is its natural notation for implicit summa-

tion, or contraction. There are two kinds of contraction: external and internal.

External Contraction

• External contraction is when the index of one tensor contracts with the index of another

tensor. Consider the simple contraction of two rank 1 tensors

Index<’i’> i;
Tensor1 A,B;
double result=A(i)*B(i);

We want this to be equivalent to

Tensor1 A,B;
double result=A(0)*B(0)+A(1)*B(1)+A(2)*B(2);

• To accomplish this, we specialize operator*(Tensor1 Expr,Tensor1 Expr)

template<class A, class B, char i>
inline double operator*(const Tensor1 Expr<A,i> &a,

const Tensor1 Expr<B,i> &b)
{

return a(0)*b(0) + a(1)*b(1) + a(2)*b(2);
}

• Because the function is typed on the template parameter i, which comes from the Index

when the Tensor1 Expr is created, it will only be called for operands that have the same

index (i.e. A(i)*B(i), not A(i)*B(j)).

• We also want to contract tensors together that result in a tensor expression, such as a

Tensor1 contracted with a Tensor2 (A(i)*T(i,j)).

• As with the addition and subtraction operators, we use a helper class

template<class A, class B, char i, char j>
class Tensor2 times Tensor1 0
{

const Tensor2 Expr<A,j,i> iterA;
const Tensor1 Expr<B,j> iterB;

public:
Tensor2 times Tensor1 0(const Tensor2 Expr<A,j,i> &a,

const Tensor1 Expr<B,j> &b)
: iterA(a), iterB(b) {}

double operator()(const int N1) const
{
return iterA(0,N1)*iterB(0) + iterA(1,N1)*iterB(1)

+ iterA(2,N1)*iterB(2);
}

};

• The 0 appended to the end of the class is a simple way of naming the classes, since we will

need a similar class for the case of A(i)*T(j,i) (as opposed to A(i)*T(i,j), which we have

here).

• Then we specialize operator*(Tensor1 Expr,Tensor2 Expr)

template<class A, class B, char i, char j> inline
Tensor1 Expr<const Tensor2 times Tensor1 1

<const Tensor2 Expr<A,i,j>,
const Tensor1 Expr<B,j>,i,j>,i>

operator*(const Tensor1 Expr<B,j> &b,
const Tensor2 Expr<A,i,j> &a)

{
typedef const Tensor2 times Tensor1 1

<const Tensor2 Expr<A,i,j>, const Tensor1 Expr<B,j>,i,j>
TensorExpr;

return Tensor1 Expr<TensorExpr,i>(TensorExpr(a,b));
}

Internal Contraction

• Contraction can also occur within a single tensor. The only requirement is that there are

two indices to contract against each other.

• A simple example would be

Index<’i’> i;
Tensor2 T;
double result=T(i,i);

We want this to be equivalent to

double result=T(0,0)+T(1,1)+T(2,2);

• This internal contraction is simply implemented by specializing
Tensor2::operator()(Index,Index)

template<char i>
double operator()(const Index<i> index1,

const Index<i> index2)
{

return data00 + data11 + data22;
}

• There is also a more complicated case where there is an internal contraction, but the result

is still a tensor. For example, a rank 3 tensor W contracting to a rank 1: W(i,j,j).

• For this, we define a helper class

template<class A, char i>
class Tensor3 contracted 12
{

const A iterA;
public:

double operator()(const int N) const
{

return iterA(N,0,0) + iterA(N,1,1) + iterA(N,2,2);
}
Tensor3 contracted 12(const A &a): iterA(a) {}

};

Then we define a specialization of operator()(Index,Index,Index) to create one of these

objects

template<char i, char j> inline
Tensor1 Expr<const Tensor3 contracted 12<Tensor3 dg,i>,i>
operator()(const Index<i> index1, const Index<j> index2,

const Index<j> index3) const
{

typedef const Tensor3 contracted 12<Tensor3 dg,i> TensorExpr;
return Tensor1 Expr<TensorExpr,i>(TensorExpr(*this));

}

• Now, if we ask for the x component of W(i,j,j), the compiler will automatically sum over

the second and third indices, returning W(0,0,0)+W(0,1,1)+W(0,2,2).

Symmetric/Antisymmetric Tensors

• It is often the case that a tensor will have various symmetries or antisymmetries, such as

S(i,j)=S(j,i)(Symmetric), or A(i,j)=-A(j,i)(Antisymmetric).

• It can be quite advantageous to take advantage of these symmetries because it reduces

storage and computation requirements.

• For example, a symmetric rank 2 tensor S only has 6 truly independent elements (S(0,0),

S(0,1), S(0,2), S(1,1), S(1,2), S(2,2)), instead of 9. The other three elements (S(1,0),

S(2,0), S(2,1)) are simply related to the previous elements.

• An antisymmetric rank 2 tensor A only has 3 independent elements (A(0,1), A(0,2), A(1,2)).

Three of the other elements are simply related to these three (A(1,0)=-A(0,1), A(2,0)=-

A(0,2), A(2,1)=-A(1,2)). The rest (A(0,0), A(1,1), and A(2,2)) must be zero, since

A(0,0)=-A(0,0) etc.

• The effect becomes more dramatic with higher rank tensors. The Riemann tensor men-

tioned before has four indices, making a total of 81 possible elements, but symmetries and

antisymmetries reduce that number to 6.

Symmetric Tensors

• It turns out that implementing a symmetric tensor is quite simple.

• First, we define a class (Tensor2 symmetric) with the minimum number of elements.

• Then we write the indexing operators (operator()(int,int,...)) so that, if an element

that is not available is requested, it uses the symmetry and returns the equivalent one.

• For example, for a symmetric rank 2 tensor, we only define data00, data01, data02, data11,

data12, and data22. Then, if element (2,1) is requested, we just return data12.

• We simplify the equals operator so that it only sets the elements we have.

• Finally, we write all of the arithmetic and contraction operators that use Tensor2 symmetric’s,

but they are basically the same as the no-symmetry case.

Antisymmetric Tensors

• Implementing antisymmetric tensors is a bit more tricky.

• The same kinds of changes are made to the definitions of Tensor and Tensor Expr, but it is

not clear what should be returned when an

operator()(int,int,...) asks for an element that is identically zero (such as A(0,0)).

• If we just want to read it, that is no problem. We just return zero.

• However, what if we want to write to it (such as in A(0,0)=1)?

• Introducing a run time error will make it harder for the compiler to optimize expressions.

• The kludge that we have come up with is to return a dummy variable named zero.

– This variable is a member of the TensorN Antisymmetric class, and is initialized to 0.

– Because a read will often look like a write, we will still get the right answer in those

cases.

– However, if zero is actually written to, it will ruin this trick.

– It therefore places a burden on the application programmer not to assign to identically

zero elements.

Reduced Rank Tensors

• Expressions like A(i)=T(0,i) can sometimes pop up.

• To support this, we make another helper class.

template<class A, char i>
class Tensor2 number 0
{

const A &iterA;
const int N;

public:
double & operator()(const int N1)
{

return iterA(N,N1);
}
double operator()(const int N1) const
{

return iterA(N,N1);
}
Tensor2 number 0(A &a, const int NN): iterA(a), N(NN) {}

};

• This class is instantiated when operator()(int,Index<>) is called on a Tensor2

template<char i>
Tensor1 Expr<const Tensor2 number 0<const Tensor2,i>,i>
operator()(const int N, const Index<i> index1) const
{

typedef const Tensor2 number 0<const Tensor2,i> TensorExpr;
return Tensor1 Expr<TensorExpr,i>(TensorExpr(*this));

}

• The end result of all of this is that when we write statements like

Index<’i’> i;
Tensor1 A;
Tensor2 T;
A(i)=T(0,i);

we create a Tensor1 Expr<Tensor2 number 0<Tensor2,’i’>,’i’> which then gets assigned to

the Tensor1 Expr<Tensor1,’i’> created by A(i).

Compiler/Operating System Compiles the library?

Comeau como 4.2.45.2 + libcomobeta14/Linux x86 Yes
Compaq cxx 6.3/Tru64
GNU gcc 2.95.2/Linux x86, 2.95.3/Solaris, 2.95.2/AIX
KAI KCC 4.0d/Linux x86, 4.0d/AIX
IBM xlC 5.0.1.0/AIX Yes with occasional ICE’s
SGI CC 7.3.1.1m/Irix Somewhat-no <cmath> and

can’t override template
instantiation limit

Intel icc 5.0/Linux x86 Somewhat-uses excessive
resources and can’t override
template instantiation limit

Portland Group pgCC 3.2/Linux x86 No, can’t handle long
mangled names, no <cmath>

Sun CC 6.1/Solaris Sparc No, doesn’t support partial
specialization with non-type
template parameters

Performance

• We’ve written some simple benchmarks. One shows that, with the KAI compiler, this library

is just as fast as using simple arrays. The other compilers can be hundreds of times slower.

• This is good evidence that we didn’t make any serious performance errors in our implemen-

tation.

• A more complicated, but still simple, benchmark shows very different results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60

T
im

e
of

 a
rr

ay
 c

od
e/

T
im

e
of

 T
en

so
r

co
de

Number of operators

KAI KCC AIX
KAI KCC Linux

SGI CC
Comeau

Compaq cxx
Intel icc
IBM xlC

GNU gcc AIX
GNU gcc Linux

GNU gcc Solaris

Extending the Library

• A reader with foresight may have looked at the declaration of Tensor1 and thought that

hard coding it to be made up of double’s is rather short sighted. It is not so difficult to

envision the need for tensors made up of int’s or complex<double>.

• It might also be nice to use two or four dimensional tensors (so a Tensor1 would have 2 or

4 elements, a Tensor2 would have 4 or 16 elements).

• The obvious answer is to make the type and dimension into template parameters. We then

specialize for each dimension

template<class T, int Dim> class Tensor1;
template<class T> class Tensor1<T,2> {

T x, y;
.
.
.

}
template<class T> class Tensor1<T,3> {

T x, y, z;
.
.
.

}

• Alternately, we could use arrays, and then we wouldn’t have to specialize for each dimension.

However, that doesn’t work very well for tensors with symmetries.

• We use traits to automatically promote types (e.g. from int to double, or from double to

complex<double>).

• We can even make the arithmetic operators dimension agnostic with some template meta-

programming.

• Then, if you’re trying to follow Buckaroo Banzai across the 8th dimension, you only have

to define the Tensor1, Tensor2, Tensor3, etc. classes for eight dimensions, and all of the

arithmetic operators are ready to use.

• We can also define Index to have a dimension

template<char i, int Dim>
class Index{};

When creating a Tensor Expr, we can use the dimension of the Index rather than the

dimension of the Tensor to determine Tensor Expr’s dimension. Then if we have a four-

dimensional tensor, it becomes simple to manipulate only the lower three dimensional parts

by using only three dimensional Index’s.

• There is a danger, though. What if we use a four-dimensional Index in a three dimensional

Tensor? Without range checking, this kind of bug can go undetected for a long time.

• We have implemented this generalization. It uncovers a deficiency in the template support

by gcc, so it can’t compile it. The performance is similar.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60

T
im

e
of

 a
rr

ay
 c

od
e/

T
im

e
of

 g
en

er
al

 T
en

so
r

co
de

Number of operators

KAI KCC AIX
KAI KCC Linux

SGI CC
Comeau

Compaq cxx
Intel icc
IBM xlC

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 10 20 30 40 50 60

T
im

e
of

 o
rig

in
al

 T
en

so
r/

T
im

e
of

 g
en

er
al

 T
en

so
r

Number of operators

KAI KCC AIX
KAI KCC Linux

SGI CC
Comeau

Compaq cxx
Intel icc
IBM xlC

Conclusion

• We have described a high performance tensor library that supports arithmetic operators,

implicit summation, and reduced rank with tensors of arbitrary dimension and type, and

with any kind of symmetry or antisymmetry.

• Compilers have gotten much better at compiling these libraries. Some of the compilers that

were hopeless with these methods a year ago now do reasonably good jobs.

• The library provides reasonable performance, although simple arrays will almost always be

faster, sometimes significantly.

Acknowledgements

We gratefully acknowledge the help of Comeau computing in providing a copy of their compiler

for evaluation. This work was supported in part by NSF grant PHY 97-34871. An allocation of

computer time from the Center for High Performance Computing at the University of Utah is

gratefully acknowledged. CHPC’s IBM SP system is funded in part by NSF Grant #CDA9601580

and IBM’s SUR grant to the University of Utah.

