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Overview

• Template methods have opened up a new way of building C++ libraries. These meth-

ods allow the libraries to combine the seemingly contradictory qualities of ease of use and

uncompromising efficiency.

• However, libraries that use these methods are notoriously difficult to develop.

• In this talk, I’m going to examine the benefits reaped and the difficulties encountered in

using these methods to create a friendly, high performance, tensor library.

• We find that template methods mostly deliver on this promise, though requiring moderate

compromises in usability and efficiency.



Introduction to Tensors

• Tensors are used in a number of scientific fields, such as geology, mechanical engineering,

and astronomy. They can be thought of as generalizations of vectors and matrices.

• Consider multiplying a vector P by a matrix T , yielding a vector Q
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Writing the equations out explicitly

Qx = TxxPx + TxyPy + TxzPz

Qy = TyxPx + TyyPy + TyzPz

Qz = TzxPx + TzyPy + TzzPz



• Alternatively, we can write it as

Qx =
∑

j=x,y,z

TxjPj

Qy =
∑

j=x,y,z

TyjPj

Qz =
∑

j=x,y,z

TzjPj

or even more simply as

Qi =
∑

j=x,y,z

TijPj,

where the index i is understood to stand for x, y, and z in turn.

• In this example, Pj and Qi are vectors, but could also be called rank 1 tensors (because
they have one index). Tij is a matrix, or a rank 2 tensor. The more indices, the higher the
rank.

• So the Riemann tensor in General Relativity, Rijkl, is a rank 4 tensor, but can also be
envisioned as a matrix of matrices.



Summation Notation

• Einstein introduced the convention that if an index appears in two tensors that multiply

each other, then that index is implicitly summed.

• Using this Einstein summation notation, the matrix-vector multiplication becomes simply

Qi = TijPj

This mostly removes the need to write the summation symbol
∑

j=x,y,z. This implicit

summation is also called contraction.

• Of course, now that the notation has become so nice and compact, it becomes easy to write

much more complicated formulas such as the definition of the Riemann tensor

Ri
jkl = dGi

jkl − dGi
lkj + Gm

jkGi
ml − Gm

lkGi
mj.



Evaluation on a Grid

• Now consider evaluating this equation on an array with N points. We could use multidi-

mensional arrays and start writing lots of loops

for(int n=0;n<N;++n)
for(int i=0;i<3;++i)

for(int j=0;j<3;++j)
for(int k=0;k<3;++k)
for(int l=0;l<3;++l)

{
R[i][j][k][l][n]=dG[i][j][k][l][n]

- dG[i][l][k][j][n];
for(int m=0;m<3;++m)
R[i][j][k][l][n]+=G[m][j][k][n]*G[i][m][l][n]

- G[m][l][k][n]*G[i][m][j][n];
}

• This is a dull, mechanical, error-prone task, exactly the sort of thing computers are sup-

posed to do for you. This style of programming is often referred to as C-tran, since it is

programming in C++ but with all of the limitations of Fortran 77.



• We would like to write something like

R(i,j,k,l)=dG(i,j,k,l) - dG(i,l,k,j)
+ G(m,j,k)*G(i,m,l) - G(m,l,k)*G(i,m,j);

and have the computer do all of the summing and iterating over the grid automatically.



The Easy-to-Implement, Inefficient

Solution with Nice Notation

• The most straightforward way to proceed is to make a set of classes (Tensor1, Tensor2,

Tensor3, etc.) which simply contains arrays of doubles of size N. Then we overload the

operators +, - and * to perform the proper calculation and return a tensor as a result.

• The well known problem with this is that it is slow and a memory hog. Consider evaluating

the expression

Ai = Bi + Ci

(

DjEj

)



double *temp1=new double[N]; delete[] temp1;
for(int n=0;n<N;++n) delete[] temp2[0];

for(int i=0;i<3;++i) delete[] temp2[1];
temp1[n]=D[i][n]*E[i][n]; delete[] temp2[2];

double *temp2[3] delete[] temp3[0];
temp2[0]=new double[N]; delete[] temp3[1];
temp2[1]=new double[N]; delete[] temp3[2];
temp2[2]=new double[N];
for(int n=0;n<N;++n)

for(int i=0;i<3;++i)
temp2[i][n]=C[i][n]*temp1[n];

double *temp3[3]
temp3[0]=new double[N];
temp3[1]=new double[N];
temp3[2]=new double[N];
for(int n=0;n<N;++n)

for(int i=0;i<3;++i)
temp3[i][n]=B[i][n]+temp2[i][n];

for(int n=0;n<N;++n)
for(int i=0;i<3;++i)

A[i][n]=temp3[i][n];



• This required three temporaries (temp1 = DjEj, temp2i = Ci ∗ temp1, temp3i =

Bi + temp2i) requiring 7N doubles of storage.

• None of these temporaries disappear until the whole expression finishes.

• For expressions with higher rank tensors, even more temporary space is needed.

• Moreover, these temporaries are too large to fit entirely into the cache, where they can be

quickly accessed. The temporaries have to be moved to main memory as they are computed,

even though they will be needed for the next calculation.

• With current architectures, the time required to move all of this data back and forth between

main memory and the processor is much longer than the time required to do all of the

computations.



The Hard-to-Implement, Somewhat

Inefficient Solution with Nice Notation

• This is the sort of problem for which template methods are well-suited. Using expression

templates, we can write

A(i)=B(i)+C(i)*(D(j)*E(j));

and have the compiler transform it into something like

for(int n=0;n<N;++n)
for(int i=0;i<3;++i)

{
A[i][n]=B[i][n];
for(int j=0;j<3;++j)
A[i][n]+=C[i][n]*(D[j][n]*E[j][n]);

}



• There is only a single loop over the N points.

• The large temporaries are no longer required, and the intermediate results

(like D[j][n]*E[j][n]) can stay in the cache.

• This is a specific instance of a more general code optimization technique called loop-fusion.

It keeps variables that are needed for multiple computations in the cache, which has much

faster access to the processor than main memory.



The Downside

• This will have both nice notation and efficiency for this expression. What about a group of

expressions?

• Consider inverting a symmetric, 3x3 matrix (rank 2 tensor) A. Because it is small, a fairly

good method is to do it directly

det=A(0,0)*A(1,1)*A(2,2) + A(1,0)*A(2,1)*A(0,2)
+ A(2,0)*A(0,1)*A(1,2) - A(0,0)*A(2,1)*A(1,2)
- A(1,0)*A(0,1)*A(2,2) - A(2,0)*A(1,1)*A(0,2);

I(0,0)= (A(1,1)*A(2,2) - A(1,2)*A(1,2))/det;
I(0,1)= (A(0,2)*A(1,2) - A(0,1)*A(2,2))/det;
I(0,2)= (A(0,1)*A(1,2) - A(0,2)*A(1,1))/det;
I(1,1)= (A(0,0)*A(2,2) - A(0,2)*A(0,2))/det;
I(1,2)= (A(0,2)*A(0,1) - A(0,0)*A(1,2))/det;
I(2,2)= (A(1,1)*A(0,0) - A(1,0)*A(1,0))/det;



for(int n=0;n<N;++n)
det[n]=A[0][0][n]*A[1][1][n]*A[2][2][n]

+ A[1][0][n]*A[2][1][n]*A[0][2][n]
+ A[2][0][n]*A[0][1][n]*A[1][2][n]
- A[0][0][n]*A[2][1][n]*A[1][2][n]
- A[1][0][n]*A[0][1][n]*A[2][2][n]
- A[2][0][n]*A[1][1][n]*A[0][2][n];

for(int n=0;n<N;++n)
I[0][0][n]= (A[1][1][n]*A[2][2][n]

- A[1][2][n]*A[1][2][n])/det[n];
for(int n=0;n<N;++n)

I[0][1][n]= (A[0][2][n]*A[1][2][n]
- A[0][1][n]*A[2][2][n])/det[n];

for(int n=0;n<N;++n)
I[0][2][n]= (A[0][1][n]*A[1][2][n]

- A[0][2][n]*A[1][1][n])/det[n];
for(int n=0;n<N;++n)

I[1][1][n]= (A[0][0][n]*A[2][2][n]
- A[0][2][n]*A[0][2][n])/det[n];

for(int n=0;n<N;++n)
I[1][2][n]= (A[0][2][n]*A[0][1][n]

- A[0][0][n]*A[1][2][n])/det[n];
for(int n=0;n<N;++n)

I[2][2][n]= (A[1][1][n]*A[0][0][n]
- A[1][0][n]*A[1][0][n])/det[n];



• Once again, we have multiple loops over the grid of N points.

• We also have a temporary, det, which will be moved between the processor and memory

multiple times and can not be saved in the cache.

• In addition, each of the elements of A will get transferred four times.



• If we instead manually fuse the loops together

for(int n=0;n<N;++N)
{

double det=A[0][0][n]*A[1][1][n]*A[2][2][n]
+ A[1][0][n]*A[2][1][n]*A[0][2][n]
+ A[2][0][n]*A[0][1][n]*A[1][2][n]
- A[0][0][n]*A[2][1][n]*A[1][2][n]
- A[1][0][n]*A[0][1][n]*A[2][2][n]
- A[2][0][n]*A[1][1][n]*A[0][2][n];

I[0][0][n]=(A[1][1][n]*A[2][2][n]
- A[1][2][n]*A[1][2][n])/det;

// and so on for the other indices.
.
.
.

}

• det and the elements of A at a particular n can fit in the cache while computing all six
elements of I. After that, they won’t be needed again.

• For N=100,000 this code takes anywhere from 10% to 50% less time (depending on archi-
tecture) while using less memory.



• This is not an isolated case. In General Relativity codes, there can be over 100 named

temporaries like det.

• For various reasons, it will probably never be possible for compilers to fuse all of the loops

and remove extraneous temporaries themselves.

• The POOMA library uses an approach which should solve some of these problems. It defers

calculations and then evaluates them together in a block. However, it still requires storage

for named temporaries.

• Does all this mean that we have to go back to C-tran for performance?



The Hard-to-Implement, Efficient

Solution with only Moderately

Nice Notation

• The flaw in the previous method is that it tried to do two things at once: implicitly sum

indices and iterate over the grid.

• Iterating over the grid while inside the expression necessarily meant excluding other expres-

sions from that iteration.

• It also required temporaries to be defined over the entire grid.

• To fix this, we need to manually fuse all of the loops, and provide for temporaries that won’t

be defined over the entire grid.



• We proceed by making two kinds of tensors. One of them just holds the elements (so a

Tensor1 would have three doubles, and a Tensor2 has 9 doubles). This is used for the local

named temporaries.

• The other kind holds pointers to arrays of the elements. To iterate over the array, we

overload operator++. A rough sketch of this tensor pointer class is

class Tensor1 ptr
{

mutable double *x, *y, *z;
public:

void operator++()
{

++x;
++y;
++z;

}
\\ Indexing, assignment, initialization operators etc.

}



• The matrix inversion example then becomes

for(int n=0;n<N;++N)
{

double det=A(0,0)*A(1,1)*A(2,2) + A(1,0)*A(2,1)*A(0,2)
+ A(2,0)*A(0,1)*A(1,2) - A(0,0)*A(2,1)*A(1,2)
- A(1,0)*A(0,1)*A(2,2) - A(2,0)*A(1,1)*A(0,2);

I(0,0)= (A(1,1)*A(2,2) - A(1,2)*A(1,2))/det;
I(0,1)= (A(0,2)*A(1,2) - A(0,1)*A(2,2))/det;
I(0,2)= (A(0,1)*A(1,2) - A(0,2)*A(1,1))/det;
I(1,1)= (A(0,0)*A(2,2) - A(0,2)*A(0,2))/det;
I(1,2)= (A(0,2)*A(0,1) - A(0,0)*A(1,2))/det;
I(2,2)= (A(1,1)*A(0,0) - A(1,0)*A(1,0))/det;
++I;
++A;

}



• An example which mixes the pointer and non-pointer tensor classes is

void f(const Tensor2 ptr T, const Tensor1 ptr P,
Tensor1 ptr Q, const int N)

{
for(int n=0;n<N;++n)

{
Tensor2 T symmetric;
T symmetric(i,j)=(T(i,j)+T(j,i))/2;
Q(i)=T symmetric(i,j)*P(j);
++Q;
++T;
++P;

}
}

This function symmetrizes the matrix T and contracts that with P, putting the result in Q.



• This solution is not ideal and has a few hidden traps, but is certainly better than C-tran.

• However, this may not be the right kind of solution for generic arrays. They correspond to

rank 0 tensors (tensors without any indices). It is a win for higher rank tensors because

most of the complexity is in the equations with indices. But for generic arrays, there are no

indices. A solution like this would look almost identical to C-tran.



How Well Does it Work?

• We found that, when compiled with KAI’s KCC compiler on an IBM SP2, the efficient

library runs about twice as fast and uses a third of the memory of the inefficient library.

When compiled with GNU gcc or IBM’s xlC, the efficient library code was 10-20% slower

than when compiled with KCC.

• However, not all compilers support enough of the standard to compile the efficient library,

while the inefficient method works with almost any compiler.



Compiler/Operating System Compiles efficient library?

Comeau como 4.2.45.2 + libcomobeta14/Linux x86 Yes
Compaq cxx 6.3/Tru64
GNU gcc 2.95.2/Linux x86, 2.95.3/Solaris, 2.95.2/AIX
KAI KCC 4.0d/Linux x86, 4.0d/AIX
IBM xlC 5.0.1.0/AIX Yes with occasional ICE’s
SGI CC 7.3.1.1m/Irix Somewhat-no <cmath> and

can’t override template
instantiation limit

Intel icc 5.0/Linux x86 Somewhat-uses excessive
resources and can’t override
template instantiation limit

Portland Group pgCC 3.2/Linux x86 No, can’t handle long
mangled names, no <cmath>

Sun CC 6.1/Solaris Sparc No, doesn’t support partial
specialization with non-type
template parameters



• We made two small benchmarks to test how well the compilers could optimize away the

overhead of the expression templates. The first is a simple loop

Tensor1 x(0,1,2), y(3,4,5), z(6,7,8);
for(int n=0;n<1000000;n++)

{
Index<’i’> i;
x(i)+=y(i)+z(i);

+(y(i)+z(i))-(y(i)+z(i))
+(y(i)+z(i))-(y(i)+z(i))
+(y(i)+z(i))-(y(i)+z(i))

.

.

.
}

• The complexity of the expression is determined by how many (y(i)+z(i))-(y(i)+z(i))

terms there are in the final expression.

• Note that since we’re adding and subtracting the same amounts, the essential computation

has not changed.



• We also coded a version of the code that used normal arrays instead of the Tensor1 class,

and compared the execution speeds of the two versions.

• For large expressions, KCC was the only compiler that could fully optimize away the overhead

from the expression templates, although we had to turn off exceptions in order to do it.

• This is good evidence that we didn’t make any serious optimization errors in implementation.

• For the other compilers, the slowdown increased with the number of expressions, becoming

more than 100 times slower than the version using arrays.

• This benchmark is rather simplistic, so we created a second benchmark.



Tensor1 y(0,1,2);
Tensor1 a1(2,3,4);
Tensor1 a2(5,6,7);
Tensor1 a3(8,9,10);
Tensor1 a4(11,12,13);
Tensor1 a5(14,15,16);
for(int n=0;n<1000000;++n)

{
const Index<’i’> i;
const Index<’j’> j;
const Index<’k’> k;
const Index<’l’> l;
const Index<’m’> m;

y(i)+=a1(i)
+ 2*a2(i)
+ 3*a1(j)*a2(j)*a3(i)
+ 4*a1(j)*a3(j)*a2(k)*a2(k)*a4(i)
+ 5*a1(j)*a4(j)*a2(k)*a3(k)*a5(i);

a1(i)*=0.1;
a2(i)*=0.2;
a3(i)*=0.3;
a4(i)*=0.4;
a5(i)*=0.5;

}
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• The first thing to notice in these plots is that none of the compilers can optimize the

expressions completely. Even for the best compilers, the Tensor class can run much slower

than ordinary arrays.

• However, it is unclear how much this matters in real codes. Writing the equivalent of our

General Relativity code using ordinary arrays would be extremely tiresome and error-prone.

• However, as noted earlier, the differences between KCC, xlC, and gcc for our General Rela-

tivity code were only 10-20%. Unfortunately, this might just be because they are all terrible

at optimizing. Your mileage may vary.



Extending the Library

• A reader with foresight may have looked at the rough declaration of Tensor1 ptr and thought

that hard coding it to be made up of double* is rather short sighted. It is not so difficult

to envision the need for tensors made up of int’s or complex<double>.

• It might also be nice to use two or four dimensional tensors (so a Tensor1 would have 2 or

4 elements, a Tensor2 would have 4 or 16 elements).



• We have implemented this generalization. It uncovers a deficiency in the template support

by gcc, so it can’t compile it.

• Also, KCC can’t fully optimize complicated expressions in the first benchmark as it could

with the simpler version of the library, leading to code that runs hundreds of times slower.

• Interestingly enough, the TinyVector classes in Blitz are also templated on type and dimen-

sion, and complicated expressions can not be fully optimized in that kind of benchmark as

well.
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• The results are generally mixed, although KCC seems to do better while como and xlC do

worse.

• However, the overall conclusions from the last section are unchanged.



Conclusion

• The original promise of expression templates as a way to get away from C-tran is not

completely fulfilled.

• Although the syntax is much improved, there are still cases where a programmer must resort

to at least some manual loops in order to get maximum performance.

• Even with this work, there are still performance penalties which vary from problem to

problem.
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