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• CIG is an NSF funded center 
that develops, maintains, and 
supports geophysics software.

• We focus on high performance 
modeling codes.

• All of our services are free.

             geodynamics.org



  

SPECFEM3D

• Simulates seismic 
wave propagation 
in sedimentary 
basins or any 
other regional 
geological model.



  

SPECFEM3D GLOBE

• Simulates global 
and regional 
(continental scale) 
seismic wave 
propagation.

• We also provide a 
portal that allows 
you to run on a 
remote 
supercomputer.



  

PyLith

• A finite element 
code for dynamic 
and quasi-static 
tectonic 
deformation 
problems.



  

CitcomS

• A finite element 
code for 
compressible 
thermomechanical 
convection 
problems in the 
mantle.



  

Gale

• A 2D/3D code for 
long term tectonics 
solving problems 
in orogenesis, 
rifting, and 
subduction.



  

AMR: The Next Step
• Focusing on CitcomS and Gale, a 

consistent request we receive from the 
community is adaptive mesh refinement.



  

Gamr

• Gamr is intended to be the successor of 
both CitcomS and Gale.

• Those codes have a lot of capabilities.
• To be concrete, I have written down all of 

the relevant capabilities I could come up 
with.

• Please comment if something is missing 
or should be taken away.



  

Stokes Solver

• Compressible or incompressibile (C=0)
• Highly variable viscosity:       globally,      

in a small region, sometimes sharp 
discontinuities, sometimes just steep
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Energy Equation

• Both convection dominated and diffusion 
dominated.

• The heating term Q encompasses viscous 
dissipation, latent heat from phase 
transitions, and radiogenic heat 
production.

∂T
∂ t

v⋅∇ T=∇
2TQ



  

Elasticity

T. V. Gerya, D. Yuen, PEPI 163 (2007) 83-105



  

Non-Linear Rheologies

• Mohr-Coulomb

 yield=Ctan φ⊥

• Power Law Creep

=[̇/ A ]1/neQ /nRT



  

Material Tracking

J. Suckale et al, JGR 115 (2010) B07409



  

Material History



  

Pressure-Temperature Traces

P. Van Keken, S. Zhong, EPSL 171 (1999) 533-547



  

Deformable Top and Bottom
Boundaries

C. W. Fuller et al. Geology 34 (2006) 2, 65-68



  

Arbitrary Mix of Kinematic and 
Stress Boundary Conditions

C. W. Fuller et al. Geology 34 (2006) 2, 65-68



  

Deformable Side Boundaries

P. E. Van Keken et al. PEPI 171 (2008) 187-197



  

Large Deformation

P. Van Keken, S. Zhong, EPSL 171 (1999) 533-547



  

Lateral Density Variations

H. Schmeling et al. PEPI (2007) doi:10106/j.pepi.2008.06.028



  

2D and 3D

H. Schmeling et al. PEPI (2007) doi:10106/j.pepi.2008.06.028



  

Global, Regional, Cartesian



  

Fast

• O(N) solvers in 3D with large viscosity 
variations

• Scales to thousands of processors.
• Decent performance in 2D



  

Easy to Modify

• Because we certainly have not done 
everything that everyone wants.

• CitcomS is very good in this respect.  
Gale is very bad.



  

Methods

• The immediate question is then what 
kinds of methods do we use?

• Finite Elements
– Flexible

• Finite Difference/ Finite Volume
– Faster?
– Require Immersed Interfaces, Immersed 

Boundary, or Ghost Fluid



  

Methods

• The immediate question is then what 
kinds of methods do we use?

• Finite Elements
– Flexible

• Finite Difference/ Finite Volume
– Faster?
– Require Immersed Interfaces, Immersed 

Boundary, or Ghost Fluid
• For now: BOTH



  

Finite Element

• Built on deal.II
dealii.org

• Has almost any type of element you 
would want
– As long as it is quadrilateral or hexahedral

• Interfaces with Petsc for solvers
• Parallel

– Recently incorporated the p4est library.  
Demonstrated runs up to 16,000 cores.

– These runs were done on up to 480 cores.



  

Current Status

• Isoviscous Stokes solver
       or

• Variable viscosity is written, but not all of 
the bugs have been worked out.

• Temperature is solved semi-explicitly: 
explicit terms for the advection, implicit 
terms for the diffusion
– adds a numerical viscosity for stability

• There is no material tracking yet, so in 
these examples, buoyancy is entirely 
driven by thermal gradients.

Q2Q1 Q2 P−1



  



  



  



  



  



  



  

• This exposed a tricky detail you have to 
keep in mind when adapting the grid.



  

Finite Volume

• Based on SAMRAI
http://computation.llnl.gov/casc/SAMRAI

• Supports staggered, multi-block grids
• Interfaces with Petsc on the coarsest 

level
• SAMRAI reportedly scales up to 64,000 

cores.



  

Current Status

• Parallel, multigrid, adaptive, variable 
viscosity Stokes solver
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Current Status

• Parallel, multigrid, adaptive, variable 
viscosity Stokes solver
– in 2D.  In 3D, we do not yet have multigrid or 

adaptive working.
• No time stepping.
• No Temperature



  

Solver

• Originally used the
staggered grid method
from Taras Gerya's book

• Very useful for debugging,
especially the code
included included with the
book.

• Not so useful for parallel.



  

Solver

• Now I use

• I can handle 3 orders of magnitude 
viscosity variation.  Not as good as what 
Tackley reported (maybe a bug in my 
implementation?).



  

Adaptivity

• Originally considered M. Albers JCP 160 
(2000), 126-150

• Solved Stokes in serial
on an adapted,
staggered, finite
volume grid.



  

Adaptivity

• On coarse-fine boundaries, need to 
interpolate boundary values.

• This must be at least 3rd order.  
Otherwise, the
boundary
error makes
the refined
grid useless  



  

Adaptivity

• However, Albers specifies Dirichlet 
conditions for the normal velocities.

• In general, that applied velocity will not 
be divergence free.

• So you can not converge to a solution on 
the finer grids.
– The pressure solution diverges as it tries to 

counteract the erroneous divergence.
– Yet it works?

• Eh Tan used similar boundary conditions 
for a finite element code



  

Adaptivity

• I instead set the normal derivative and 
the tangential value.



  

Circular Inclusion



  

Circular Inclusion



  

Geomod 2004 Extension

• This is a sandbox with half of the domain 
on a treadmill going left.

• I generated a solution with Gale, then 
solved that viscosity structure using the 
finite volume code.



  

Geomod 2004 Extension



  

Future Plans
• Figure out the best way to solve variable 

viscosity Stokes
• Figure out the best way to track material 

history
– Particles
– High order fields

• Optimize time stepping?
• Do everything else in the list

– If you want something done first, helping out 
tends to make it happen sooner.
hg clone http://geodynamics.org/hg/cs/AMR/Gamr
hg clone http://geodynamics.org/hg/cs/AMR/SAMRAI
svn co http://www.dealii.org/svn/dealii/trunk/deal.II
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