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Gamr

Gamr Is Intended to be the successor of
both CitcomS and Gale.

Those codes have a lot of capabillities.

To be concrete, | have written down all of
the relevant capabilities | could come up
with.

Please comment if something is missing
or should be taken away.



Stokes Solver

e Compressible or incompressibile ( )

* Highly variable viscosity: globally,
In a small region, sometimes sharp
discontinuities, sometimes just steep



Energy Equation

 Both convection dominated and diffusion
dominated.

 The heating term encompasses viscous
dissipation, latent heat from phase
transitions, and radiogenic heat
production.



regular marker distribution random marker distribution




Non-Linear Rheologies

e Mohr-Coulomb

« Power Law Creep



Marker chain method Field method
1 =

i Level set method
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Fast

 O(N) solvers in 3D with large viscosity
variations

e Scales to thousands of processors.
e Decent performance in 2D



Easy to Modify

 Because we certainly have not done
everything that everyone wants.

e CitcomsS Is very good in this respect.
Gale Is very bad.



Methods

 The iImmediate guestion is then what
kinds of methods do we use?

e Finite Elements
— Flexible

e Finite Difference/ Finite Volume
— Faster?

— Require Immersed Interfaces, Immersed
Boundary, or Ghost Fluid



Methods

 The iImmediate guestion is then what
kinds of methods do we use?

e Finite Elements
— Flexible

e Finite Difference/ Finite Volume
— Faster?

— Require Immersed Interfaces, Immersed
Boundary, or Ghost Fluid

e For now:



Finite Element
Built on deal.ll

Has almost any type of element you
would want

— As long as it is quadrilateral or hexahedral
Interfaces with Petsc for solvers

Parallel

— Recently incorporated the p4est library.
Demonstrated runs up to 16,000 cores.

— These runs were done on up to 480 cores.



Current Status

Isoviscous Stokes solver
or

Variable viscosity Is written, but not all of
the bugs have been worked out.

Temperature is solved semi-explicitly:
explicit terms for the advection, implicit
terms for the diffusion

— adds a numerical viscosity for stability

There Is no material tracking yet, so In
these examples, buoyancy Is entirely
driven by thermal gradients.
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Finite Volume
Based on SAMRAI

Supports staggered, multi-block grids

Interfaces with Petsc on the coarsest
level

SAMRAI reportedly scales up to 64,000
cores.



Current Status

« Parallel, multigrid, adaptive, variable
viscosity Stokes solver
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Current Status

« Parallel, multigrid, adaptive, variable
viscosity Stokes solver

—1in 2D. In 3D, we do not yet have multigrid or
adaptive working.

* No time stepping.
e No Temperature



Solver

 Originally used the
staggered grid method
from Taras Gerya's book

* Very useful for debugging,
especially the code
iIncluded included with the
book.

* Not so useful for parallel.




Contents lists available at ScienceDirect PHYICS
OF THE EARTII
ANLD PLANELARY
INTERIOIRS

Physics of the Earth and Planetary Interiors

journal homepage: www.elsevier.com/locate/pepi

Modelling compressible mantle convection with large viscosity
contrasts in a three-dimensional spherical shell using the
yin-yang grid

Paul J. Tackley*

Institute of Geophysics, ETH Hoenggerberg HPP L13, Department of Earth Sciences,
ETH Zurich 8093, Switzerland




temperature

grid structure




coarse grid values

fine grid values

interpolated values




Adaptivity

However, Albers specifies Dirichlet
conditions for the normal velocities.

In general, that applied velocity will not
be divergence free.

So you can not converge to a solution on
the finer grids.

— The pressure solution diverges as it tries to
counteract the erroneous divergence.

— Yet it works?

Eh Tan used similar boundary conditions
for a finite element code



Adaptivity

e | Instead set the normal derivative and
the tangential value.



Iry.sa

Ti




iry. samrai T Hry.samrai




Geomod 2004 Extension

 This Is a sandbox with half of the domain
on a treadmill going left.

* | generated a solution with Gale, then
solved that viscosity structure using the
finite volume code.
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Future Plans

Figure out the best way to solve variable
viscosity Stokes

Figure out the best way to track material
history

— Particles

— High order fields

Optimize time stepping?

Do everything else in the list

— If you want something done first, helping out
tends to make it happen sooner.
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