
Instantaneous Archives

Walter Landry1and Serge Monkewitz1

1Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125, USA;
wlandry@caltech.edu

Abstract. IRSA, the NASA/IPAC Infrared Science Archive, is one of the largest
and busiest astronomy archives in the world. In the past, our main emphasis was on
making new data and new capabilities available. With the widespread implementation
of Virtual Observatory protocols, there are a number of useful tools that can quickly and
easily perform insightful, sophisticated queries from archives around the world (Taylor
2017; Astropy Collaboration et al. 2013). The queries, if not handled quickly, can easily
overwhelm the site and interfere with other users. In addition, reducing latency below
the point of human perception enables more interactive and exploratory science.

This paper discusses how we are re-architecting our query pipeline to eliminate
process, file system, and database connection overheads. Taken together, these im-
provements delivered radical, order of magnitude improvements in latency and through-
put.

1. Introduction

IRSA, the NASA/IPAC Infrared Science Archive1, is the official archive for NASA’s
infrared and submillimeter missions. Archives serve a vital role in NASA missions,
with half of all publications from a mission coming from archive users (Rebull 2017).
IRSA was started in 1993, and the underlying mechanisms for serving data to users has
changed dramatically over that time. The current iteration of the software and hardware
architecture was mostly engineered to satisfy two use cases. One is that of users visiting
the website and manually entering search parameters. The other is that of users writing
simple scripts to perform a modest number of queries. In both cases, returning a result
in a few seconds is completely adequate.

That is no longer adequate. Scientists want, and increasingly demand, to be able
to perform complex queries over all of the billions of records at IRSA and receive the
results immediately. They use programmatic APIs to perform enormous numbers of
concurrent queries. It is not uncommon for us to get more than 100,000 queries in a
single day. The rapidly increasing size of the datasets from new missions leads to a
desire to do more analysis through the web site. That drives a requirement for more
sophisticated web interfaces which can generate many queries as the user moves their
mouse (Wu 2017). Delays of a few seconds then become an exercise in frustration.

1http://irsa.ipac.caltech.edu

1

mailto:wlandry@caltech.edu
http://irsa.ipac.caltech.edu


2 Landry and Monkewitz

Finally, as a part of IPAC, we share our data center with other NASA missions.
They would like to use IRSA to support their pipelines and archives, and ideally the
time to fetch results would be dictated by data center network latency (~0.3 ms) rather
than software.

In this paper, we will discuss IRSA’s strategy for dealing with this new reality. To
constrain our efforts, we will focus on reducing the time to get a complete response
from our most popular service, the IVOA Simple Cone Search (SCS)2. When a user
queries the IRSA SCS service, the result is a list of objects within a specified radius of
the search position. Since releasing the service in the beginning of 2015, it has come
to dominate our query volume. To be even more specific, we will look at small cone
searches (0.6-60 arcseconds) of random points in the sky of the 2MASS All-Sky Point
Source Catalog (Skrutskie et al. 2006). This 2MASS catalog is both large enough,
with 471 million objects, to be a realistic test, and small enough to copy around and
test without undue difficulty (about 500 GB). For the 2MASS catalog, these queries
generally return a small number of results (0-10).

2. Existing Architecture: Apache + CGI

These types of cone search queries have always been very common. So we have op-
timized our database to handle it, using the Hierarchical Triangular Mesh (HTM) to
tile the sky (Groom et al. 2014, Sec. 6.1). With the 2MASS catalog, when executing
a query directly against our Oracle 11g database, the median time to get the result is
about 30 ms.

However, when fetching the result through the SCS service, even within the data
center, we measure much larger median times of 700 ms. The root cause of this dis-
parity lies in our use of the CGI mechanism bundled with the Apache web server. This
mechanism starts a new program for each query, which in turn runs a series of other
programs. For every query, we fetch metadata about the table as well as the result itself.
So for each query, we must make two completely new database connections and several
new processes. About 1/3 of the 700 ms query result time is just starting new processes,
while the other 2/3 is initiating new database connections. The actual database query
time is in the noise.

Additionally, the programs were written when memory was much less plentiful, so
they make extensive use of a networked file system to store intermediate results. This
does not currently show up as a bottleneck, probably because we have decent hardware
driving our storage system. But it is something to keep in mind when optimizing the
system.

3. New Architecture: Embedded Web server

Given the description of the problem, the solution is fairly obvious. We can eliminate
the cost of new processes by running an embedded web server that spawns new threads
to handle requests. This is similar to Java Servlets3, a technology already in wide use

2http://www.ivoa.net/documents/REC/DAL/ConeSearch-20080222.html

3https://en.wikipedia.org/wiki/Java_servlet

http://www.ivoa.net/documents/REC/DAL/ConeSearch-20080222.html
https://en.wikipedia.org/wiki/Java_servlet


Instantaneous Archives 3

among astronomy data centers. This also allows us to keep a pool of connections that
the threads can use as needed, instead of constantly creating and destroying them.

Our stack is mostly C++, so our preference is for an embedded web server that
nicely integrates with C++. Searches on the web turn up more than 20 projects which
might be suitable. Some of them we set aside because of their relative instability, lack of
recent activity, significant dependencies, or overly complicated API. For the remaining
few candidates, we wrote a simple application which waits for 10 seconds and returns
“Hello World”. Then we used httperf to make 128 connections per second for a total
of 1024 connections4. Most of the candidates just broke, while others did not perform
well. Given these results, we decided to use libhttpserver5, a C++ wrapper around
libmicrohttpd6. Even then, we still had to make a few improvements to libhttpserver
to accommodate our needs. Coincidentally, the ALMAWebQL site also decided on
libmicrohttpd for their embedded web server (Zapart et al. 2017).

For connecting to the database, there are, again, many choices. We decided to
use the official Oracle OCCI library because of its easy, built-in support for connection
pools. It is also, presumably, no slower than other alternatives.

The last optimization is to do as much as possible in memory. When a query radius
is small enough (less than 1 arcmin), then nothing is ever written to a file system. We
load the query result straight into memory, do any necessary processing or file type
conversion, and then write directly to the outgoing http connection.

With all of these improvements, median response times drop from 700 ms to 80
ms. This is a dramatic improvement, so we will be deploying this new backend soon.

4. Future Directions

80 ms is still a far cry from instantaneous inside the data center. There are still a few
small things we could do at the cost of increased complexity, such as caching the table
metadata. But for that effort to be worthwhile, we will have to also radically improve the
response times for the raw database query. We have experimented with Postgres using
the Q3C (Koposov & Bartunov 2006) and H3C7 tiling, but the timings were neither
significantly better nor worse than the Oracle results.

The results presented by (Korotkov & Bartunov 2017) demonstrated single digit
millisecond query times for Postgres+Q3C if the entire table fits in memory. We do not
have access to a single machine with enough memory. Instead, we loaded the 2MASS
catalog into a MemSQL8 instance which distributed the table over 10 machines. The
results were OK, with raw SQL queries returning in 8 ms. It probably means that, even
in optimal conditions, we will not be able to return results in less that 10 ms. This
would, at least, be faster than screen refresh rates (~16 ms).

4Specifically, the command: httperf –hog –num-conns=1024 –num-calls=1 –rate=128 –server localhost
–port 8080

5https://github.com/etr/libhttpserver

6http://www.gnu.org/software/libmicrohttpd/

7http://cds.u-strasbg.fr/resources/doku.php?id=h3c

8http://www.memsql.com/

https://github.com/etr/libhttpserver
http://www.gnu.org/software/libmicrohttpd/
http://cds.u-strasbg.fr/resources/doku.php?id=h3c
http://www.memsql.com/


4 Landry and Monkewitz

There are also practical problems with MemSQL. It only solves the problem for
that one table, and the expense to replicate this setup for all of our tables would be
prohibitive. Also, there are some architectural decisions in MemSQL which result in
cross matches against small user uploaded tables taking much longer than our current
setup. However, it does suggest that we might be able to get significant improvements
if we moved our busiest tables from HDDs to SSDs.

As a final note, we are also looking into clustered databases, such as LSST’s
QServ9 or the Citus extension to Postgres10. They will help more with handling many
concurrent requests rather than reducing the latency of a single request. They also have
the added benefits of shorter times to load large tables and faster execution of more
complex queries which require full table scans.

Acknowledgments. We would like to thank Mark O’Dell, Angela Zhang, Scott
Terek, and Gilles Landais for their assistance.

References

Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., Greenfield, P., Droettboom, M., Bray,
E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A. M., Kerzendorf, W. E., Con-
ley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, M. M.,
Nair, P. H., Unther, H. M., Deil, C., Woillez, J., Conseil, S., Kramer, R., Turner, J. E. H.,
Singer, L., Fox, R., Weaver, B. A., Zabalza, V., Edwards, Z. I., Azalee Bostroem, K.,
Burke, D. J., Casey, A. R., Crawford, S. M., Dencheva, N., Ely, J., Jenness, T., Labrie,
K., Lim, P. L., Pierfederici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat, M., & Stre-
icher, O. 2013, A&A, 558, A33. 1307.6212

Groom, S., Ly, L., Lynn, M., Mi, W., Monkewitz, S., O’Dell, M., Rey, R., Roby, T., Teplitz, H.,
Terek, S., et al. 2014, in ADASS XXIII, vol. 485, 185

Koposov, S., & Bartunov, O. 2006, in Astronomical Data Analysis Software and Systems XV,
edited by C. Gabriel, C. Arviset, D. Ponz, & S. Enrique, vol. 351 of Astronomical
Society of the Pacific Conference Series, 735

Korotkov, A., & Bartunov, O. 2017, in ADASS XXVI, edited by TBD (San Francisco: ASP),
vol. TBD of ASP Conf. Ser., TBD

Rebull, L. 2017, in ADASS XXVI, edited by TBD (San Francisco: ASP), vol. TBD of ASP
Conf. Ser., TBD

Skrutskie, M., Cutri, R., Stiening, R., Weinberg, M., Schneider, S., Carpenter, J., Beichman, C.,
Capps, R., Chester, T., Elias, J., et al. 2006, The Astronomical Journal, 131, 1163

Taylor, M. 2017, in ADASS XXVI, edited by TBD (San Francisco: ASP), vol. TBD of ASP
Conf. Ser., TBD

Wu, X. 2017, in ADASS XXVI, edited by TBD (San Francisco: ASP), vol. TBD of ASP Conf.
Ser., TBD

Zapart, C., Shirasaki, Y., Ohishi, M., Mizumoto, Y., Kawasaki, W., Kobayashi, T., George, K.,
& Eguchi, S. 2017, in ADASS XXVI, edited by TBD (San Francisco: ASP), vol. TBD
of ASP Conf. Ser., TBD

9https://github.com/lsst/qserv

10https://www.citusdata.com/

1307.6212
https://github.com/lsst/qserv
https://www.citusdata.com/

