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a b s t r a c t

The static offsets caused by earthquakes are well described by elastostatic models with a discontinuity in
the displacement along the fault. A traditional approach to model this discontinuity is to align the nu-
merical mesh with the fault and solve the equations using finite elements. However, this distorted mesh
can be difficult to generate and update. We present a new numerical method, inspired by the Immersed
Interface Method (Leveque and Li, 1994), for solving the elastostatic equations with embedded dis-
continuities. This method has been carefully designed so that it can be used on parallel machines on an
adapted finite difference grid. We have implemented this method in Gamra, a new code for earth
modeling. We demonstrate the correctness of the method with analytic tests, and we demonstrate its
practical performance by solving a realistic earthquake model to extremely high precision.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Motivation

A common feature of many earthquakes is a complex network
of intersecting faults. Accurately modeling the static offsets and
associated large scale deformation due to this fault geometry is
crucial to a reliable understanding of seismic hazards (Marshall
et al., 2008). The behavior of these faults is relatively well de-
scribed by the equations of variable modulus elastostatics. How-
ever, for realistic faults, the displacement does not gradually taper
off, but rather ends abruptly. This abrupt termination gives rise to
a logarithmic singularity in the displacement (Okada, 1992). In
realistic faults, these singularities are smoothed out by non-linear
processes at the fault tips that are on a scale that are many orders
of magnitude smaller than the fault itself. These characteristics
make it challenging to numerically model realistic fault networks.

In addition, elastostatics is only one piece of the puzzle when
modeling the earthquake cycle. We want to incorporate an elas-
tostatic solver into an overall algorithm for modeling the entire
earthquake cycle (Barbot et al., 2012). We desire a unified method,
using the same mesh, architecture, and boundaries, that can solve
elliptic equations (for static offsets of earthquakes), parabolic
equations (for poro-elastic and visco-elastic evolution between
earthquakes), and hyperbolic equations (for dynamic rupture
during an earthquake). Then we will have a powerful tool for self
r Ltd. This is an open access articl

y),
consistent models of the entire earthquake cycle.
At present, one relatively successful approach to building this

kind of tool uses boundary integral methods (Barbot et al., 2012;
Kaneko et al., 2010; Lapusta and Barbot, 2012; Hori et al., 2004;
Kato, 2004; Matsuzawa et al., 2010; Rice, 1993; Shibazaki and
Shimamoto, 2007; Smith and Sandwell, 2004). However, boundary
integral methods inevitably make simplifications in the geometry
or the physics of the problem. Finite-element methods (Aagaard
et al., 2013; Hassani et al., 1997; Melosh and Williams, 1989;
Puente et al., 2009; Kaneko et al., 2008, 2011) provide a natural
way to fully represent the geometry and the physics as long as the
mesh conforms to the faults. Generating these conforming meshes
can be quite challenging and time consuming, especially when the
faults intersect. The extended finite element method (Becker et al.,
2009; Coon et al., 2011; Zangmeister, 2015) shows great promise in
addressing this problem with mesh generation, though it has yet
to be applied to realistic 3D earthquake models.

Finite difference methods, on the other hand, have not tradi-
tionally been used for this kind of problem. Straightforward im-
plementations of finite differences require that the displacement
be continuous and differentiable. This limitation spurred the de-
velopment of the Immersed Interface Method (IIM) (Leveque and
Li, 1994). IIM explicitly models the discontinuous jump, resulting
in a series of corrections to the ordinary finite difference stencils.
IIM has spawned a number of variations, and some of these have
been applied to various problems in elastostatics (Rutka et al.,
2006; Rutka and Wiegmann, 2006; Botella and Cheny, 2010; Zhu
et al., 2012). None of them have looked at models most relevant to
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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earthquakes, where we prescribe the discontinuity in the dis-
placement. More importantly, none of them have discussed how to
handle the difficulties associated with the singularity at the fault
tip. Finally, none of these methods have been implemented on
adapted grids or parallel machines.

The purpose of this paper is to describe a new method, inspired
by IIM, that naturally handles all of the difficulties associated with
faults. This method was developed with an eye towards perfor-
mance, so it naturally extends to the use of parallel machines and
highly adapted grids. With this solver in place, we can then use the
existing deep understanding of how to implement hyperbolic and
parabolic solvers for the equations specific to earthquakes in a
finite difference framework (Day, 1982; Dunham and Archuleta,
2005; Dunham et al., 2011; Andrews, 2002; Day et al., 2005; Harris
et al., 2009; Olsen et al., 1997; Ely et al., 2009, 2010; Cui et al.,
2010; Kozdon et al., 2013; Moczo et al., 2014).

We first describe the equations of linear elasticity, how we treat
internal dislocations, and how we solve these equations on an
adapted mesh. Then we demonstrate the correctness of the
method and our implementation with a series of analytic tests.
Finally, we document the performance of our implementation
with a simulation of the 1992 Mw 7.3 Landers earthquake. The
algorithm described in this paper is implemented in Gamra, a code
available at https://bitbucket.org/wlandry/gamra. Gamra is a
French acronym for Géodynamique Avec Maille Rafinée Adapti-
vement, meaning “geodynamics with adaptive mesh refinement”.
Fig. 1. Reference cell showing where the displacement and moduli are defined. The
bottom left is at x¼0, y¼0, and the top right is at δ=x x , δ=y y.
2. Methods

We begin by describing the equations of linear elasticity (Sec-
tion 2.1) and the mesh we use for solving them (Section 2.2). Then
we describe the Gauss–Seidel smoother that we use as a compo-
nent in our solvers (Section 2.3). Then we describe the corrections
we make to treat internal dislocations of arbitrary orientation in
two and three dimensions (Section 2.4). Then we describe how we
implement boundary conditions (Section 2.5). With these com-
ponents, we have a stable, accurate solver for earthquake physics.

However, this will not be a fast solver without multigrid. To
implement multigrid (Section 2.6), we need coarsening (Section
2.6.1) and refinement (Section 2.6.2) operators. To implement
adaptive multigrid, we also need to set boundary conditions at
coarse-fine boundaries (Section 2.6.3).

2.1. Governing equations

We solve the Navier's equation for elastostatic deformation
with the infinitesimal strain approximation

σ + = ( )f 0, 1ji j i,

where the stress components sji are defined using Hooke's law in
terms of the displacement components vi, Lame's first parameter
λ, and the shear modulus μ

σ μ δ λ(→) ≡ ( + ) + ( )v v v v . 2ji i j j i ij k k, , ,

We use Einstein summation notation, where each index i, j, k is
understood to x, y, and z in turn, repeated indices are summed,
and commas (,) denote derivatives.

For all of our test problems, the stress tensor will be symmetric
σ σ( = )ij ji . In addition, the forcing term fi is zero for many of our test
problems. But equivalent body forces can be used to represent
inelastic deformation in quasi-static deformation simulations
(Barbot and Fialko, 2010; Rousset et al., 2015; Rollins et al., 2015).
Therefore the inclusion of body forces in Eq. (1) is critical for
modeling quasi-static deformation due to off-fault processes.
2.2. Staggered grid

We discretize the equations on a staggered grid, with the dis-
placement located at cell faces as shown in Fig. 1. Our method
requires the shear modulus (μ) at both the cell centers and cell
corners. Since μ is a given function of space, we could compute it
exactly at both cell centers and corners. We have found that we get
larger reductions in the residuals for each multigrid V-cycle by
using the given function to compute the cell centers, and then
using the geometric mean to fill the value at the cell corners.
Specifically, in 2D, for a reference cell where the bottom left corner
is located at x¼0, y¼0, μ at that corner is

( )μ μ μ μ μ= ( )δ δ δ δ δ δ δ δ− − − − . 3x y x y x y x y0,0 /2, /2 /2, /2 /2, /2 /2, /2
1/4

The subscripts δy0, /2 indicate the variable located at an offset of
x¼0, δ=y y/2 from the bottom left corner. So 0,0 is the bottom left
corner, δy0, /2 is the left face, and δ δx y/2, /2 is the cell center.

The Lame parameter λ is only needed at cell centers, so there is
no extra interpolation step.

We can specify μ and λ one of two ways: analytic expressions
and tables. We use the muparser library (Berg, 2014) to evaluate
analytic expressions. To compute the modulus at the boundary, we
may need the modulus at a point outside the boundary. For ana-
lytic expressions, we evaluate the expression at that outside point.
For moduli given by a table, we choose the closest point covered
by the table.

For multigrid, the modulus on coarser levels is interpolated
from finer levels, not directly computed. Using the interpolated
values rather than the directly computed values results in larger
reductions in the residuals for each multigrid V-cycle. The inter-
polation onto the cell centered modulus is a simple arithmetic
average of all of the fine points in the coarse cell.

This treatment of the modulus works well for the moderate
jumps in material properties seen in realistic models of

https://bitbucket.org/wlandry/gamra


Fig. 2. Update schedule for Gauss–Seidel relaxation in 2D. Updates for 3D follow a
similar pattern.
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earthquake regions. More extreme jumps would require a more
sophisticated treatment, such as applying IIM to material inter-
faces as well as faults.

2.3. Gauss–Seidel relaxation

The core of the solver is a red-black Gauss-Seidel relaxation.
We first define the residual as the non-zero remnant of Eq. (1):

σ(→
→

) = + ( )r v f f, . 4i ji j i,

We discretize the residual in the usual way with centered differ-
ences. To be explicit, in 2D, we write the x component as

( ) ( ) ( )( )σ λ μ λ μ= + + + ( + )v v v v2 .jx j x x x y y x x y y x y, , , , , , , ,

where, in the reference cell

⎡
⎣⎢

⎤
⎦⎥

( )( )

( )( )

( )( )λ μ

λ μ

λ μ δ

+

= − +

− − +
( )

δ

δ δ δ δ δ δ δ
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v v x

2

2
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, , 0, /2

, /2 0, /2 /2, /2 /2, /2

0, /2 , /2 /2, /2 /2, /2
2
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We then define the expression ∂ ∂r v/i i x y, as the derivative of the
finite difference expression of ri with respect to vi x y, . For example,
the derivative of λ μ( ( + )) δv 2x x x y, , 0, /2

is

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )( )λ μ

λ μ λ μ δ

∂
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+

= + − +
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δ δ δ δ δ δ δ δ− −

v
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2 2 / .

x y
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0, /2
, , 0, /2

/2, /2 /2, /2 /2, /2 /2, /2
2

The Gauss–Seidel update is then given by

( ) = −
∂ ∂ ( )

v v
r

r v/
.

7
i x y i x y

i

i i x y
, new ,

,

We perform the update in-place in two separate passes as seen in
Fig. 2. Our discretization allows us to update each point within a
pass independently of each other. Parallelizing the method in-
volves partitioning the mesh into regions that each belong to a
different processor. Synchronization only happens before each
pass, where each region gets updates to a single layer of ghost
zones.

2.4. Treatment of internal dislocations

2.4.1. Theory
We define faults as a finite-sized internal surfaces where there

is a displacement discontinuity called slip. Fault slip is often
described in piece-wise fault segments where displacement is
uniform (Okada, 1985, 1992; Wang et al., 2003; Meade, 2007;
Barbot and Fialko, 2010; Gimbutas et al., 2012; Nikkhoo and
Walter, 2015), and we follow this convention. This means that a
model of a realistic fault will be made up of hundreds of fault
segments, each with their own slip. Internal dislocations can cause
stress and displacement singularities at the edges of these seg-
ments (Paris and Sih, 1965; Tada et al., 2000; Bürgmann et al.,
1994). These singularities do not manifest themselves in real
earthquakes because the rock behaves nonlinearly beyond a cer-
tain stress by, for example, breaking. However, the nonlinear be-
havior occurs over a length scale that is orders of magnitude
smaller than the rest of the model. So the stress can still get quite
high, and these stress concentrations are key to understanding
localized deformation. So modeling algorithms must not break
down in the presence of these singularities.

To illustrate the method, consider the single faults in 2D in
Fig. 3. The slip → = ( )s s s,x y on the faults is given as an input to the
problem. To compute vx x, at point = ( )A A A,x y , we would ordinarily
write the finite difference expression

δ= ( − )δ δ+ −v v v x/ .x x x A x A x A x A, FD /2, /2,x y x y

If vx is constant on each side ( )v v,right left , then the slip sx is the
difference between them = −s v vx right left. The finite difference
then becomes

δ δ= ( − ) =v v v x s x/ / .x x x, FD right left

This goes to infinity as the resolution improves and h decreases.
However, the true value of vx x, at that point is zero because vx is
constant. The core idea of the original IIM paper (Leveque and Li,
1994) is to model these discontinuities explicitly. Then we com-
pute corrections to apply when computing derivatives. In this case,
we can compute the correct derivative by carefully subtracting
away the divergent term δs x/x . Then the corrected expression is

δ δ δ= − = [ − ] −δ δ+ −v v s x v v x s x/ / / .x x x x x x A x x A x x, corrected , FD /2 /2x x



Fig. 3. Fault corrections on a grid. The stencil for the derivative vx x, crosses the fault
at point A but misses the fault at point E. The stencil for the derivative vy yx, at point
C crosses the fault but at point D only partially crosses it.
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One important note is that this correction is only applied if the line
between δ+v x x/2 and δ−v x x/2 crosses the fault. If it barely misses the
fault as in the case at point E in Fig. 3, there is no correction. This is
a significant difference from other methods such as extended finite
elements, which can have difficulties arising from small cell vo-
lumes or bad aspect ratios (Coon et al., 2011). This also implies that
the tip of the fault, as seen by these corrections, is only determined
up to O(h).

When looking at terms with second derivatives, we build them
out of first derivatives. Since the slip is constant along the fault
element, there is no correction in the derivatives, only in the
displacements. This means that we can build Δ( )vx xx, , the correc-
tion for vx xx, , out of Δ( )vx x, , the corrections for vx x, . In the reference
cell, this is

( ) ( ) ( )Δ Δ Δ δ= [ − ] ( )δ δ δ δ δ−
v v v x/ 8x xx y x x x y x x x y, 0, , /2, , /2,

To be concrete, when applying this method to Eq. (5), the
correction at point B in Fig. 3 is
Fig. 4. Types of corrections stored. We store the jump across the cell (Δf), fro
( )( )( )Δ λ μ λ μ
δ

+ = − [ + ]
( )δ δ− −v

s
x

2 2 .
9x x x B

B x B B x B
x

, , /2, /2, 2x y x y

The correction to Eq. (6) at point C is

( )( )Δ λ λ λ
δ δ

= − [ − ]δ δ+ −v
s

x y
,y y x C

C x C C x C
y

, , /2, /2,x y x y

which is zero if the modulus λ is constant. In contrast, the cor-
rection at point D, near the tip of the fault, is

( )( )Δ λ λ
δ δ

= − ( )δ+v
s

x y
,y y x D

D x D
y

, , /2,x y

because only the derivative

δ+
vy y D x D, /2,x y

crosses the fault. Finally, the correction to Eq. (6) at point B is zero
because each individual correction Δ( )vy y, is zero.

Note that these corrections do not depend on the type of slip
on the fault. For example, if the slip has a tensile opening com-
ponent, the corrections would have the same form. The only re-
striction is that the two sides of the fault must be in contact. With
that said, we have only tested slip along the faults, so we can only
speak with certainty about that kind of slip, referred to as mode II
and III in fracture mechanics.

Excluding the tips, these corrections are exact for the type of
slip being modeled. This means that the stress is consistent and
well behaved across the fault. We might also expect that it would
lead to a scheme that converges as ( )O h2 . However, the method's
uncertainty about the location of the tips introduces a global error
that converges as ( )O h . At the fault tips themselves, the logarith-
mic singularity introduces a local error that does not converge.

The above treatment describes a single fault. Since the problem
is linear, we can handle multiple faults, each made up of multiple
fault segments, by adding all of the corrections from individual
fault segments together. This includes the cases where fault seg-
ments intersect.

2.4.2. Implementation
These corrections do not depend on the computed displace-

ment field. In that sense, they could be interpreted as body forces fi
in Eq. (1). In 3D, this would only require 3 additional numbers per
cell. However, that analogy breaks down when we consider the
m the face to the edge (Δe), and, in 3D, from the face to the corner (Δc).
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corrections needed when interpolating between coarse and fine
levels for multigrid (Section 2.6). With that in mind, we pre-
compute and store the jump in several different directions as
shown in Fig. 4. In 2D, we store the jump across a cell (Δf) and the
jump to the corner (Δe). Then, for example, the correction in Eq.
(9) becomes

( )( )( )Δ λ μ λ μ
Δ

δ
+ = − ( + )δ δ

δ
− −

−
v

x
2 2 .x x x B

B x B B x B

fx B x B
, , /2, /2,

/2,

2x y x y

x y

In 2D, this requires storing

Δ Δ Δ Δ Δ Δ( ) + ( ) =+ − + −2 , 4 , , , 6fx fy ex ex ey ey

extra numbers per cell in addition to the 6 (vx, vy, λ, μ, fx, fy) al-
ready needed. In 3D, we store the jump across the cell (Δf), from
the cell face to the edge (Δe), and from the cell face to the corner
(Δc). This requires

Δ Δ Δ Δ Δ Δ Δ

Δ Δ Δ Δ

( ) + ( …)

+ ( …) =
+ − + −

+ + + − − + − −

3 , , 12 , , , ,

12 , , , , 27

fx fy fz ex z ex z ey z ey z

cx y cx y cx y cx y

extra numbers per cell in addition to the 9 already needed.

2.5. Boundary conditions

We have implemented two different kinds of boundary con-
ditions: Dirichlet, where the displacement is fixed to a certain
value at the boundary, and stress, where the displacement is set so
as to dictate what the stress is at a point. When imposing these
conditions, it turns out that there is an ordering dependency
among the conditions. We must first impose Dirichlet conditions.
Then the shear stress conditions use values that were just set by
the Dirichlet conditions. Finally, the normal stress conditions use
values that were just set by the Dirichlet and shear stress
conditions.

2.5.1. Dirichlet
The simplest boundary condition is Dirichlet conditions on the
set by normal stress BC

set by tangent dirichlet
or shear stress BC

set by normal dirichlet BC

Fig. 5. Mapping of points set by the various boundary conditions.
displacement normal to the boundary, as shown in Fig. 5. In this
case, the value at the boundary is simply set to the boundary va-
lue:

=v v .x BC

For Dirichlet conditions on the displacement tangential to the
boundary, as shown in Fig. 5, the point outside is set so that the
average of the inner and outer points equal to the boundary value:

Δ= − −
δ δ δ− + − +

v v v2 .y x x y y x x y ey x x y/2, BC /2, /2,

The correction Δ
δ− +ey x x y/2,

is necessary to handle any faults be-

tween δ+x x/2 and x. For simplicity, we define the faults to never
extend out of the mesh.

2.5.2. Stress
A more complicated boundary condition is to set the stress

rather than directly setting the displacement.
Shear stress: The y component of the shear stress at an x

boundary is

σ σ μ= = ( + )v v .xy x y y xBC , ,

We apply this condition by setting vy at an outside point

δ
δ

σ δ μ

Δ Δ Δ δ
δ

= + ( − ) −

+ + ( − )

δ δ δ δ

δ δ δ

− + + −

− + − + + −

v v v v
x
y

x

x
y

/

.

y x x y y x x y x x y y x x y y bc x y

ey x x y ex x y y ex x y y

/2, /2, , /2 , /2 ,

/2, , /2 , /2

This depends on δ+vx x y y, /2 and δ−vx x y y, /2, so the normal Dirichlet
condition must be applied before this condition.

Normal stress: For the normal stress in the x direction in 2D, the
analytic condition is σ σ μ λ= = +v v2xx x x i iBC , , , which implies

λ σ
μ λ

= −
−
+

v
v
2

.x x
y y

,
, bc

We discretize this condition as

⎡
⎣⎢

⎛
⎝⎜

⎤
⎦⎥)

Δ

λ
δ

σ δ
λ μ

Δ λ
λ μ

δ
δ

= −

+ +

− − −
+

−
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δ δ δ δ δ

δ δ

δ δ δ δ

δ δ

− + + + +

+ −

+ − − −
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y
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x

x
y

2

2
2

2

x x x y y x x x y y fx x y y

y x x y y x x y

y x x y y y x x y y

ey x x y y

, /2 , /2 , /2

BC
/2, /2,

/2, /2, BC
BC BC

/2,
BC

BC BC

This interpolates the derivative vy y, onto δ( + )x y y, /2 . The moduli,
λBC and μBC, are also interpolated there with the usual formula

λ λ λ= ( + )δ+ .x y y x yBC
1
2 , ,

The condition in 3D has an additional term, vz z, , which is computed
in a similar manner. This discretization depends on

δ+
vy x x y/2,

, so

the shear stress condition must be applied before this condition.

2.6. Multigrid on an adapted mesh

With a smoother (Section 2.3), corrections for faults (Section
2.4), and boundary conditions (Section 2.5), we can compute
highly accurate solutions to Eq. (1) on a single grid. This will,
however, be very slow. To shorten the time to solution, we im-
plement adaptive multigrid (Appendix A). This is essentially an
enhancement of the multigrid method for adapted grids. To im-
plement this, we must first implement coarsening, refinement,
and coarse-fine boundary operators.
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Fig. 6. Stencil and weights used for coarsening in 2D.
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Fig. 7. Weights of coarse grid stencil for refining in 2D.
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2.6.1. Coarsening
Following Albers (2000) we use weighted arithmetic averages

to coarsen the face centered displacement and residuals. Fig. 6
shows the fine values used to compute the coarse value for vx. The
corresponding expression in the reference cell is

(
)

)

( )

Δ Δ Δ Δ

Δ Δ

= ( + + + + +

+ − + −

+ +

δ δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ

− −

− −

+ −

V v v v v v v2 2 8

8

2.
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fx x y fx y fx x y fx y

ex y ex y

0, , /2 0, /2 , /2 ,3 /2 0,3 /2 ,3 /2

, /2 0, /2 ,3 /2 0,3 /2

0, /2 0,3 /2

The expression in 3D is a straightforward extension
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At physical boundaries where not all of the values are available, we
average only over the face. In 2D, the expression is

Δ Δ= [ + + + ]δ δ δ δ δ+ −V v v
1
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and in 3D it is
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2.6.2. Refinement
To refine the face-centered variables, we use the stencil shown

in Fig. 7. We first compute a derivative of the coarse values, which
in 2D is

= [ − ]δ δ δ−dV V V
1
8

.x y x y x y0, 0,3 0,
We only refine corrections to the displacement, not the displace-
ment itself. So there is no need to add fault corrections. If we are at
the boundary where one of the variables is not available, we use a
one-sided derivative. For example, at =y ylower, the expression is

= [ − ]δ δ δ+ + +dV V V
1
4

.x y y x y y x y y0, 0, 3 0,lower lower lower

The fine value is computed from the closest coarse value and this
computed derivative

= −δ δ δv V dV .x y x y x y0, /2 0, 0,

In 3D, the expressions look very similar although now we in-
terpolate along diagonals. For a fine variable on a coarse face, the
derivative is

= [ − ]δ δ δ δ δ δ− −dV V V
1
8

,x y z x y z x y z0, , 0,3 ,3 0, ,

and the fine value is

= −δ δ δ δ δ δv V dV .x y z x y z x y z0, /2, /2 0, , 0, ,

For fine variables in between coarse faces, we average the fine
values on each coarse face:

= [ + ]δ δ δ δ δ δ δ δv v v .x x y z x y z x x y z, /2, /2
1
2 0, /2, /2 2 , /2, /2

2.6.3. Coarse-fine boundaries
At the interface between coarse and fine levels, we need to

compute boundary conditions for the fine mesh given the coarse
surrounding mesh. There are two cases of coarse-fine boundaries:
vector normal to the interface (e.g., vx at an x¼constant bound-
ary), and vector tangent to the interface (e.g., vx at a y¼constant
boundary). When computing these internal boundary conditions,
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Fig. 8. Weights for refining vx to the fine point F at an =x constant coarse-fine
boundary in 2D. The coarse points are first interpolated to C, then the other fine
points are used to quadratically interpolate to F.
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Fig. 9. Coarse point part of the stencil for refining vx at the =x constant coarse-fine
boundary in 3D. The x direction is into the picture. The coarse points are first in-
terpolated to C so as to line up with the fine points.
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Fig. 10. Weights for refining vx to the fine point F at the =y constant coarse-fine
boundary in 2D.
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we must use at least quadratic interpolation to keep the overall
error second order (Martin and Cartwright, 1996).

Vector normal to the interface: Fig. 8 shows the stencil that is
used to compute the fine boundary value on the coarse-fine in-
terface for the component of a vector that is normal to the inter-
face. The first step is to interpolate the coarse values to the point C.
First, we define some variables

Δ Δ

Δ Δ

Δ Δ Δ
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where Δ̄ are the corrections on the coarse grid. Then the coarse
value at C is
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The final step is to interpolate along a line to get the fine value at F
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In 3D, the interpolation for coarse values is along diagonal di-
rections as shown in Fig. 9. That means that we can replace Eq.
(10) with
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and then use Eq. (11) as is. Eq. (12) is only slightly modified for 3D
Δ
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If one of the coarse points is outside the physical domain, then we
use a simpler interpolation. If +V is outside, then

Δ Δ= [ + + − ]δ δ δ δ δ δ− ++ − − −−V V V3 ,x C cx x y z cx x y z
1
4 0 2 , , 2 , ,

and if −V is outside then

Δ Δ= [ − − + ]δ δ δ δ δ δ+ −− ++V V V5 .x C cx x y z cx x y z
1
4 0 2 ,3 ,3 2 , ,
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Fig. 11. Weights for refining vx to F at the =z constant coarse-fine boundary in 3D.
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Eq. (14) is used unchanged.
Vector tangent to the interface: Fig. 10 shows the stencil used for

refinement in 2D when the vector is tangential to the interface. For
the case where the coarse and fine values are on the same co-
ordinate axis, the interpolation is

Δ
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When the fine value does not lie along the coarse grid, we use a
simple average of the neighboring coarse values

≡ [ + ]δ δ δ δ δV V V ,x x y x y x x y,
1
2 0, 2 ,

and the interpolation becomes
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At the =x xmin or =x xmax corner, some of the fine corrections (e.g.
Δ

δfx y0, /2
) are not necessarily defined. For the =x xmin boundary, we

work around this by correcting the coarse value at δ( )y0, to
δ δ( )x y2 , first, and then using the same correction from δ δ( )x y2 , to

δ δ( )x y, /2 . With this, the interpolation becomes

⎡
⎣⎢

⎤
⎦⎥

( )( )
( )

( )

Δ Δ Δ Δ

Δ Δ

Δ Δ

= + −

+ ¯ + ¯ − −

+ ( − )

− −

δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ

δ δ δ δ

δ δ δ δ

− −

− +

+ − −

+ − − −

v V v v8 10 3

4 2

7

3 .

x x y x x y x x y x x y

fx y ex x y ex x y fx x y

ex x y ex x y

ex x y ex x y

, /2
1

15 , , /2 , 3 /2

0, 2 , 2 , /2 2 , /2

, /2 , /2

, 3 /2 , /2

Fig. 11 shows the points used for refinement in 3D when the
coarse and fine values are on the same coordinate axis. Defining
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we then use Eq. (11) to compute the coarse value at point C. Then
we use an expression much like (15) to compute the fine value
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2.7. Generating the adapted mesh

The final part of the method is generating a mesh. Starting with
a uniform grid at the coarsest resolution

1. Compute a solution on the current set of grids (Section 2.6).
2. If the current number of levels is less than the maximum

number of levels
(a) Compute the maximum curvature at each cell center

δ δ( + + )x x y y/2, /2 . The curvature in the x direction with fault
corrections is

Δ Δ
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At the boundaries, not all points are defined. For example, at
an =x xlower Dirichlet boundary, δ δ− +vx x x y y, /2 may not be de-
fined. In these cases, we use a one-sided curvature
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We then compute the maximum curvature

= ( )C C C Cmax , , .x y zmax

) Refine all cells where > ϵCmax , where ϵ is a fixed number,
unless the maximum number of mesh refinements has been
reached. Note that ϵ is an absolute rather than a relative error.

) Recurse back to step 1 with the new set of grids.

At fault tips, the displacement is singular and so can never be
adequately resolved. However, at a finite distance from the
singularity, AMR solutions can still converge (Bai and Brandt,
1987).



Fig. 12. A cutout of the scaled displacement magnitude of a computed solution and its associated adapted mesh levels for an expanding cylinder in 3D. The axis of the
cylinder is angled 18° from the x axis. The model covers (− )5, 1, 0 to ( )5, 11, 10 . The offset is to avoid the singularity at the origin. The boundary conditions, set from the
analytic solution, are Dirichlet for the normal components 2.5.1 and stress for the tangent components 2.5.2. The equivalent resolution is × ×128 128 128.

Table 1
L1, L2, and ∞L errors and ∞L convergence rate in vx at different maximum refine-
ment levels for the 3D expanding cylinder.

Level L1 L2 ∞L ∞
+

∞L L/n n 1

0 58.1 5.10 0.859
1 5.86 0.612 0.168 5.11
2 1.36 0.125 0.0409 4.11
3 0.344 0.0313 0.0118 3.48
4 0.0819 7.79e�3 3.13e�3 3.76
5 0.0378 2.33e�3 8.02e�4 3.90
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2.8. Accuracy

When solving Eq. (1) in the presence of faults, there will always
be inaccuracies because of the singularities at the tips of the faults.
Away from the singularity, we expect ( )O h convergence (Section
2.4.1). At the singularity, analysis becomes difficult because the
Taylor series approximation breaks down. However, the scheme in
Section 2.7 monitors this error and refines where needed. This
means that, where the algorithm has stopped refining, the dis-
cretization error should be less than the error bound ϵ. In practice,
the actual error will be larger because the local error gets in-
tegrated along the points from the boundaries and singularities.

An additional source of error arises because we only approxi-
mately solve Eq. (1). If there is an error in the displacement ξi, that
will generate an error in the derivative vi j, of approximately ξ δx/i ,
where δx is the grid spacing. This implies that, for a given ξi, the
error in the stress will be at least

( )
ε σ

ξ λ μ
δ

( ) ≳
x

min ,
.ji

i

where λ μ( )min , is the smallest value of λ or μ. The modulus does
not, in our problem, vary wildly, so μ μ δ∇ ⪡ x/ . This implies that the
error in the divergence of the stress is approximately
ε σ ε σ δ( ) ∼ ( ) x/ .ji j ji,

Using Eq. (4), we relate this to the size of the residual ri

ε σ∼ ( + )r f .i ji j i,

Errors in vi do not contribute to errors in fi, so that term can be
neglected. Simplifying this gives an estimate for the size of the
error ξi in terms of the residual

ξ δ λ μ≲ ( )r x / min , ,i i
2

This error will become comparable to the discretization error
when ξ = ϵi , so we can turn this around to find the minimum re-
solution required to ensure that the solver error is smaller than the
discretization error

( )δ λ μ≳ ϵ ( )x rmin , / . 16i

To be clear, this analysis only covers errors in solving (1) using
fault segments. We do not claim to model all of the physical effects
(e.g. non-linear rheologies, topography, and curved faults).
3. Analytic tests

We have implemented this method in the parallel, adaptive
code Gamra. Gamra uses the SAMRAI framework (Hornung and
Kohn, 2002; Hornung et al., 2006) to handle the bookkeeping
associated with multiple levels, multiple grids, and multiple par-
allel processes. SAMRAI is a mature, freely available, actively de-
veloped framework for large-scale parallel structured adaptive
mesh refinement. SAMRAI uses MPI to coordinate work among the
different processors. This has allowed us to run Gamra on a wide
variety of parallel architectures: SMP nodes, traditional Linux
clusters, a Blue Gene /Q, and the Intel Xeon Phi 5110p GPGPU.

In this section we perform a number of tests to ensure that the
algorithm works as expected and that we implemented it cor-
rectly. We have verified that the code works in both 2D and 3D,



Fig. 13. A cutout of the second invariant of the scaled deviatoric stress σ σ σ σ= ( − )J /3 /2ij ji ii jj2 of a computed solution and its associated adapted mesh levels for a single fault
in 3D. The equivalent resolution of the finest level is × ×128 128 128. The fault, indicated in grey, is inclined about 25° from vertical, has slip s¼10, and has dimensions
L¼0.50, W¼0.25. The moduli are constant (μ λ= = 1). We set the boundary conditions (normal Dirichlet and shear stress) from Okada's analytic solution. The mesh is fully
refined only at the edges of the fault segment where the solution is singular. In the center of the fault segment, the solution is discontinuous but otherwise well behaved. So
those center areas do not require full refinement.

Fig. 14. ∞L error scaled by the slip s¼10 as a function of resolution for the x
component of the displacement for a single fault in 3D. The points within a radius
of 0.1 of the side and bottom edges of the faults are excluded. The ∞L error stops
converging as ( )O h when it becomes comparable to the adaptivity criteria (10�3).

Fig. 15. Numerical and analytic solutions for the scaled stress σ μ( )s L/ /xx due to a
single inclined 3D fault for various resolutions. The points are plotted along the line

= − +y h0.2 /2, =z h/2, passing near the singularity in the displacement at
(− − )0.2001, 0.2001, 0 . The points are offset by h/2 because of the staggered mesh.
The Okada solution is plotted along the same line as the finest resolution.
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but mostly discuss the 3D results for brevity. The tests are available
from the Gamra repository.1
3.1. Expanding cylinder in a heterogeneous medium

This is a simple test to ensure that we handle variable elastic
modulus correctly. In cylindrical symmetry, if we set the moduli
and body forces to
1 https://bitbucket.org/wlandry/gamra, changeset 679:

c8843527b10f18758e58011c57d5aa61098c88e2, directory input/bench-

marks/Elastic.
ρ
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then the basis functions for solutions to Eq. (1) which are purely
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Fig. 16. The scaled residual μ( )r s L/ / 2 versus the number of multigrid V-cycles for the
2D and 3D Okada solutions.
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To make the test more rigorous, we rotate the solution by an angle
θ around the y axis. Fig. 12 shows a numerical solution and its
associated adapted grid for a model with μ = 1.40 , =−v 1, =+v 0,
and θ = °18 . Table 1 shows the L1, L2, and ∞L error in vx. While the
L1 and L2 errors do converge, they do not converge as ( )O h2 . The
error in the unrefined regions no longer decreases, because the
mesh does not get smaller there. The integral of these small errors
over the large unrefined volume is large enough to affect the
overall convergence rate. This is in contrast to the ∞L error, which
converges uniformly at the expected ( )O h2 rate.

3.2. Internal dislocations

Okada (1985)and Okada (1992) derived an analytic expression
for the displacement due to a single fault in a homogeneous elastic
half space. Fig. 13 shows a solution computed by Gamra for an
inclined, rotated fault. As the grid size gets more refined, the mesh
Fig. 17. Fault geometry, slip and λ for the 199
places points closer and closer to the singularity. This means that
the global ∞L error does not shrink, but rather grows with finer
resolution. To get around this, we cut holes around the singula-
rities and compute the ∞L error on that region. Fig. 14 shows the ∞L
error as a function of resolution. We see that the error scales as

( )O h up to the point where the error becomes comparable to the
criteria for adapting the mesh. Moreover, Fig. 15 shows that, for a
line crossing near the singularity in the displacement, the stress is
well behaved.

We have also run tests where we replace one of the normal
Dirichlet conditions (Section 2.5.1) with a normal stress boundary
condition (Section 2.5.2) set using the exact Okada stress. Simi-
larly, we ran tests which replaced one of the shear stress condi-
tions (Section 2.5.2) with a tangential Dirichlet condition (Section
2.5.1). All of these tests converge in a similar manner.

Fig. 16 shows the residual versus the number of multigrid
V-cycles for 2D and 3D. In spite of the singularity at the fault tips,
the solvers perform well, with the per-iteration reduction of the
residual tending asymptotically to about 0.25 in 2D and 0.12 in 3D.
The 3D solver uses 4 rather than 2 sweeps per multigrid level, so
the absolute reduction in the residual is larger.

This gives us some confidence that all of the moving parts in-
volved in computing the solution: smoothing (Section 2.3),
boundary conditions (Section 2.5), multigrid (Section 2.6), and
adaptivity (Section 2.7) are correct and implemented correctly.
4. 1992 Mw 7.3 Landers earthquake

4.1. Setup

We construct a realistic model of the 1992 Mw 7.3 Landers
earthquake using the slip model from Fialko (2004) and the ma-
terial model from the Southern California Earthquake Center
Community Velocity Model-Harvard (CVM-H) (Tape et al., 2009).
The slip model consists of 426 individual fault segments (Fig. 17).
Fig. 17 also shows the variation of Lame's first parameter, λ. The
second Lame parameter, μ, has similar structure.

The boundaries are about 100–200 km away from the faults.
2 Mw 7.3 Landers model (Fialko, 2004).



Fig. 18. AMR level hierarchy for the 1992 Landers model at the surface (z¼0) of the model (left) and in a zoomed in region around the faults (right). Level 3, the coarsest level
shown, has × ×64 64 32 elements with a resolution of 4700 m. Level 11 has a resolution of 18 m.

Fig. 19. Zoomed in views of the computed surface displacement for the 1992 Landers model. The black lines indicate fault segments.
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The boundary conditions on the sides and bottom are free slip:
zero shear stress (Section 2.5.2) and zero normal displacement
(Section 2.5.1). The boundary condition on the top is free surface:
zero shear and normal stress (Section 2.5.2). Since these boundary
conditions are imperfect, the error due to the boundaries is about
the size of the displacement at the boundary: 1 cm. Getting the
error down to the current limits of GPS technology (about 0.5 mm
Hill et al., 2009; Langbein, 2008; Williams et al., 2004), would
require moving the boundaries so far away such that other effects
not accounted for (e.g. topography and curvature of the earth)
would become significant.
During a multigrid V-cycle, we used 4 pre- and post- sweeps.

On the coarsest level, we smoothed 32 times to get an approx-
imate solution. We set the refinement criteria ϵ (Section 2.7) to our
estimate of the boundary error: 1 cm. We continue multigrid
V-cycles until the ∞L norm of the residual (Eq. (4)) is less than

− −10 m GPa km3 2. From Eq. (16), this implies a minimum resolution

of · =−7 0.01/10 8.37 km3 , which in this case is satisfied when the
refinement level is at least 3. The mesh is globally refined to level
3, so the error is always dominated by the discretization.



Fig. 20. Scaled performance for the Landers model.
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4.2. Results

Gamra automatically generated the highly adapted mesh in
Fig. 18. This mesh has ×8.1 107 elements, while an equivalent non-
adaptive mesh would require ×2.2 1012 elements. The computed
solution in Fig. 19 highlights the discontinuous nature of the so-
lutions. We expect the error to be concentrated close to the faults,
as in Fig. 14. So even though the error may be larger near the
faults, this would not translate to a large offset error farther from
the faults. With that in mind, we expect that the error in dis-
placement in the regions covered by levels 3–10 to be about 1 cm,
or about 0.125% of the maximum displacement. Otherwise, the
automatic refinement criteria would have marked those regions
for refinement.

4.3. Performance

We computed this Landers earthquake solution on a Xen virtual
machine running in a Dell R720 with 16 physical cores (Intel Xeon
CPU E5-2670) and 256 GB of RAM using OpenMPI 1.8.8 and gcc
4.7.3. Fig. 20 shows the time to solve as a function of resolution
and number of cores. Altogether, the scaling is quite good at finer
resolutions on this shared memory architecture.

Although it is difficult to see in the plot, we see superlinear
scaling from 1 to 4 cores for finer resolution. This superlinear
scaling does not persist for higher core counts. This is probably a
quirk due to running inside a virtual machine. On different hard-
ware without a virtual machine (8 physical core Intel Xeon CPU
E5620), we do not see superlinear scaling.

We can roughly fit the relation between time and grid spacing
on the plot with a power law ∝ −t h 1.85. This is significantly better
than a solver on a fixed three-dimensional grid. Even an optimal
multigrid solver would scale as ∝ −t h 3.
5. Conclusion

Elastic deformation due to the displacement of faults can be
modeled efficiently with parallel multigrid methods using adap-
tive meshes and embedded interfaces. The multigrid efficiency is
commensurate with what is expected for the simpler Poisson's
equation multigrid solvers (Trottenberg et al., 2000), in spite of the
added complexity brought by internal dislocations and mixed
boundary conditions. The computational efficiency is improved by
the mesh adaptivity, which reduces the number of nodes by orders
of magnitudes compared with uniform meshes. A key advantage of
the proposed method is the ability to simulate complex fault
geometries without manual and labor-intensive meshing. Even in
these complex models, we experienced no problems due to in-
stabilities in the solver or excess sensitivity of the final solution to
small changes in the input.

In addition, the method offers high precision in the near field of
faults, even capturing the stress singularity asymptotically
(Fig. 15). This is important for evaluating stress and other dynamic
variables. All of these features make the proposed approach opti-
mal for generating stress and displacements kernels for inversions
for fault slip (Barbot et al., 2013), investigation of the surrounding
elastic structure (Barbot et al., 2009; Cochran et al., 2009), and
building stress and displacement kernels for simulations using the
boundary-integral method.

This study presents an important building block of earthquake
cycle simulations. A future major undertaking will be to in-
corporate rupture dynamics and quasi-static off-fault deformation.
Fault dynamics will require modeling the propagation of seismic
waves. The mesh adaptivity may then be exploited to implement
spatially variable adaptive time steps (Meglicki et al., 2007). Quasi-
static time-dependent problems with off-fault plasticity and visco-
elastic or poro-elastic deformation may be treated with the same
elliptic solver using equivalent body forces (per unit time), re-
quiring only more book-keeping to handle explicit time steps.
Many other effects may be incorporated to enable even more
realistic models of earthquakes and Earth deformation, such as a
spherical geometry for global-scale models and topography to
improve calculation of local stress.
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Appendix A. Adaptive multigrid

For completeness, we detail the exact adaptive multigrid al-
gorithmwe use. This is mostly a restatement of Section 4 of Martin
and Cartwright (1996).

First, we define a Gauss–Seidel operator (→
→

)v f NGS , , , where →v

is an initial guess,
→
f is the forcing term, and N is the number of

times to apply the smoother. The output of (→
→

)v f NGS , , is a cor-
rection

δ→ = (→
→

) ( )v v f NGS , , . 18

For N¼1, Eq. (7) implies

( ) ( )→ →
=

− → →

v f
r v f

dr dv
GS , , 1
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i i
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where (→
→

)r v f,i is defined by Eq. (4). Next we define a recursive

multigrid V-cycle relaxation routine (
→

)l dMGRelax , , where l is the

current level and
→
d is the defect. The outline of the routine is as

follows:
1. If l¼0 (the coarsest level)
(a) Using an initial guess of 0, compute a correction by applying

the smoother Ncoarse times

δ→ = (
→ →

)v d NGS 0 , , coarse

or until the ∞L norm of the residual δ( → →
)r v d,i is less than

ϵcoarse.
2. If >l 0
(a) Using an initial guess of 0, compute a correction δ→v by ap-

plying the smoother Npre times

δ→ = (
→ →

)v d NGS 0 , , .pre

(b) Compute δ( → →
)r v d,i , the residual on just the fine grid (Section

2.3).
(c) Coarsen ri to make Ri (Section 2.6.1)

= ( )R rCoarsen .i i

(d) Recursively call MGRelax to get the coarse grid correction

δ
→

= ( − )V l RMGRelax 1, .i

(e) Refine the correction δ
→
V to the fine level (Section 2.6.2) and

add it to the fine correction δ→v

δ δ δ→ = → + (
→

)v v VRefine .

(f) Apply the smoother Npost times to get a final correction

δ δ→ = ( → →
)v v d NGS , , .post

3. Return δ→v .

Given these functions, the driver routine is short.
1. Compute a composite residual ri (Eq. (4)). This includes applying

all physical (Section 2.5) and coarse-fine (Section 2.6.3) bound-
ary conditions.

2. While the ∞L norm of the residual is less than the stopping
tolerance ϵstopping

(a) Compute δ→ = ( )v l rMGRelax , imax .
(b) Add in the correction

δ→ = → + →v v v .

(c) Recompute the composite residual ri.

In pseudo-code, MGRelax is
Pr

i

e

ocedureMGRelax (
→

)l d, :
f >l 0:

δ→ =v 0
for(i¼0; <i Ncoarse; þþi)

δ δ δ→ = → + ( → →
)v v v dGS , , 1

if δ( ( ( → →
)) < ϵ )∞L r v d,i coarse :

break

lse:

δ→ = (
→ →

)v d NGS 0 , , pre

δ= ( ( → →
))R r v dCoarsen ,i i

δ
→

= ( −
→

)V l RMGRelax 1,

δ δ δ→ = → + (
→

)v v VRefine

δ δ→ = ( → →
)v v d NGS , , post
eturn δ→v
r

and the driver is
ile ( ( (→
→

)) > ϵ )∞L r v d,i stopping

= → + ( →)v v l rMGRelax ,max

→

Appendix B. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.cageo.2016.02.014.
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