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A B S T R A C T

Deformation in the Earth displays many degrees of localization. The mechanics of faulting can be well represented by slip on a 2D surface discretized in piecewise
linear boundary elements. Distributed anelastic deformation associated with fluid flow, magma transfer, or viscoelastic relaxation can be approximated by anelastic
strain discretized in 3D volume elements. The stress, traction, and displacement kernels for these elements form the basis of forward and inverse modeling of Earth's
deformation during the seismic cycle, volcanic unrest or hydrologic change. While there are a number of techniques for computing these kernels for 2D fault surfaces,
the techniques for 3D strain volumes are less developed. To improve the models of Earth's deformation, we extend previous work to numerically calculate these
kernels for 3D strain volumes in a heterogeneous half space. The model provides high-precision displacement and stress for all these cases in a self-consistent manner.
We exploit the adaptive multi-grid elastic solver implemented in the software Gamra (Landry and Barbot, 2016) to compute the deformation induced by boundary
and volume elements with high numerical efficency. We demonstrate the correctness of the method with analytic tests. We illustrate the performance by computing a
large-scale model of postseismic deformation for the 2015 Mw 7.8 Gorkha, Nepal earthquake with heterogeneous material properties. The open-source, freely
available software can be useful for the calculation of elasto-static Green's functions for localized and distributed deformation in a heterogeneous Earth.

1. Introduction

Deformation of the Earth's lithosphere at time scales relevant to the
earthquake cycle is accommodated both by slip along 2D fault surfaces
as well as distributed strain in 3D volumes. For example, in the lower
crust and mantle asthenosphere, distributed anelastic deformation is
responsible for loading faults and accommodating transient strains
(Masuti et al., 2016). The kinematics of crustal deformation can be
inferred from geodetic or seismic data during the interseismic, co-
seismic, and postseismic phases of the earthquake cycle (McGuire and
Segall, 2003; Murray and Segall, 2005; Bartlow et al., 2011; Barbot
et al., 2013; Sathiakumar et al., 2017; Amey et al., 2018; Nocquet,
2018). The development of these techniques in the last few decades has
led to an explosion of knowledge on fault behavior (Rogers and Dragert,
2003; Bakun et al., 2005; Bletery et al., 2014; Wallace et al., 2017;
Araki et al., 2017).

These methods have recently been extended to incorporate the
distributed deformation of large domains of the lithosphere (Tsang
et al., 2016; Lambert and Barbot, 2016; Barbot et al., 2017; Moore
et al., 2017; Qiu et al., 2018; Barbot, 2018b), such that it is now pos-
sible to build models of Earth's deformation that represent fault slip and
distributed strain consistently using elasto-static Green's functions.
Analytic solutions for rectangular and triangular dislocations

(Chinnery, 1961; Chinnery, 1963; Savage and Hastie, 1966; Sato and
Matsu'ura, 1974; Okada, 1985; Okada, 1992; Nikkhoo and Walter,
2015; Gimbutas et al., 2012; Meade, 2007; Jeyakumaran et al., 1992)
and tetrahedral and cuboidal strain volumes (Tsang et al., 2016;
Lambert and Barbot, 2016; Barbot et al., 2017; Barbot, 2018a,b) allow
us to build kinematic and dynamic models of lithosphere deformation
on curved fault surfaces with distributed, off-fault anelastic strain.

Unfortunately, all these solutions share an important caveat as they can
not represent lateral variations of elastic properties. These lateral variations
can be significant, such as in the case of deep sedimentary basins and their
role in fault loading in the Los Angeles area (Rollins et al., 2018).

The goal of this paper is to describe a reliable numerical method for
constructing displacement and stress Green's functions for strain vo-
lumes in a heteregeneous half-space. The method builds upon a three-
dimensional, adaptive, multi-grid elasticity solver that allows numeri-
cally efficient calculation of displacement and stress kernels (Landry
and Barbot, 2016). We describe the modeling approach and high pre-
cision tests of the implementation in Section 2. We demonstrate the
relevance of the technique by modeling postseismic deformation from
the 2015 Mw 7.8 Gorkha, Nepal earthquake in Section 3. The algo-
rithms described in this paper are implemented in Gamra, a freely
available tool for realistic earthquake modeling (see Computer code
availability).
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2. Methods

2.1. Deformation on a staggered mesh

The deformation of Earth's rocks can be broadly categorized into
elastic and anelastic deformation. In our treatment, we specify a strain
(caused by anelastic deformation) and solve for the resulting elastic
deformation in the half space (Andrews, 1978; Barbot and Fialko, 2010;
Noda and Matsu'ura, 2010; Barbot, 2018b). The elastic problem is
linear, so we can separately compute the elastic deformation caused by
individual elements of strain. Then we can add up all of the separate
solutions to find the total elastic deformation. This linearity also en-
ables inverse models of deformation, where at-depth deformation is
deduced from measured surface deformation. After computing the
surface deformation caused by each of the individual elements of at-
depth deformation, linearity turns the inversion problem into a tract-
able matrix minimization problem (McGuire and Segall, 2003; Murray
and Segall, 2005; Bartlow et al., 2011; Barbot et al., 2013; Sathiakumar
et al., 2017; Amey et al., 2018; Nocquet, 2018).

In a previous paper (Landry and Barbot, 2016), those input strain
elements were only allowed to be jumps in displacement on 2D rec-
tangular surfaces. That enabled efficient numerical calculations of dis-
placement and stress kernels, resulting in fairly realistic models of
earthquakes as patches of slip along an earthquake fault. This paper
generalizes that treatment to gradients across 3D tetrahedral and cu-
boidal volumes. More complicated geometries can be obtained by linear
superposition.

To solve this elastic problem, we start with the equation for linear
elasticity

+ =f 0,ji j i, (1)

where ij is the elastic part of the Cauchy stress and fi is a forcing term.
We use Einstein summation notation, where each index i, j, k is un-
derstood to stand for x, y, and z in turn, repeated indices are summed,
and commas (,) denote derivatives. This assumption is thought to be
valid for seismo-tectonic activity with infinitesimal strain (Fialko et al.,
2001). The elastic properties of material in the Earth are well described
by Lame's first parameter λ and the shear modulus μ (Shaw et al., 2015;
Wang et al., 2016; Simmons et al., 2010; Bassin et al., 2000; Dziewoński
and Anderson, 1981). This allows us to write the elastic stress in terms
of the elastic displacement vi as

+ +v µ v v v( ) ( ) .ji i j j i ij k k, , , (2)

Input strains are introduced through the forcing terms fi. These
forcing terms are carefully constructed to modify the solution for the
derivative of the displacement vi j, so that they match the input strain.
The displacement across a fault can be a step function. Although the
strain away from the fault is well behaved, the strain on the fault itself
would be a delta function. This requires us to be especially careful to
avoid numerical difficulties.

Since we are also interested in quasi-static deformation, we can
follow a similar line of reasoning to look at the time derivative of stress

t/ij in terms of the velocity of deformation v t/i . This results in
formulas with the same functional form as equations (1) and (2). Be-
cause a large breadth of physical processes can be captured within the
same functional form, solving equations (1) and (2) with realistic ma-
terial properties can find a broad range of applications (Tsang et al.,
2016; Moore et al., 2017; Qiu et al., 2018; Barbot, 2018b).

The numerical method we use to solve these equations is largely
described in a previous paper (Landry and Barbot, 2016). To sum-
marize, we use a parallel multigrid solver on a staggered, adapted finite
difference grid as in Fig. 1. To account for the input strain, we add
carefully constructed forcing terms fi that depend on the mesh size. For
example, when Eq. (1) is expanded out, it includes the term µv( )x x x, , .
Expressing this derivative at point =A A A( , )x y in Fig. 1 using standard

finite differences gives

= + +[ ( )
( )]

µv µ v v

µ v v x

( ) | | | |

| | | / ,
x x x A A A x A x A x A x A A

A x A x A A x A x A

, , , /2, , ,

/2, , ,
2

x y x y x y x y

x y x y x y (3)

where x is the width of each finite difference cell and the notation µ|x y,
denotes the value of μ at the coordinate x y( , ). For the fault near A, the
fault creates a step function si in the solution for the displacement vi. In
this case, the appropriate forcing term at A for the µv( )x x x, , term turns

Fig. 1. Dislocations and strain volumes on a staggered grid. In 2D, dislocations
are lines and strain volumes are triangles or rectangles. In 3D, the dislocations
are triangles or rectangles, and strain volumes are either tetrahedra or cuboids.
So this figure can represent either 2D grids or slices of 3D grids. The stencil for
µv( )x x x, , at point A gives rise to a forcing term proportional to the slip sx . At point
B, the forcing term is proportional to xxx traversed.

Fig. 2. A cutout of the invariant of the scaled deviatoric stress
=J ( /3)/2ij ji ii jj2 of a computed solution for a single cuboidal strain vo-

lume. The equivalent resolution of the finest level is × ×256 256 256. The strain
volume, indicated in grey, is made up of 6 tetrahedra and has dimensions

=L 0.50, =W 0.25, =H 0.08. Each tetrahedra has shear strain components
= = 1600LH HL , so the total slip across the narrow part of the block is

= × = × =s H 1600 0.08 128LH . The moduli are constant ( =µ 1.6, = 1.5).
We set the boundary conditions (normal Dirichlet and shear stress) from the
analytic solution in (Lambert and Barbot, 2016; Barbot et al., 2017).
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out to be

= +f s µ x| | / .x A A x A x A, /2,
2

x y x y (4)

Since the displacement vi is no longer continuous, we also have to
take care when interpolating results for multigrid. After working
through all of the details, described in (Landry and Barbot, 2016), the
result is that the interpolation stencils acquire some extra constant
terms.

2.2. 3D strain volumes

The main advance of this paper is the generalization of this fra-
mework to strain volumes. We consider tetrahedra or cuboids with a
piecewise uniform anelastic strain ij. A realistic distributed strain can
be modeled by adding up many of these individual elements. This
uniform strain corresponds to a gradient in the displacement. Consider
Fig. 1. The computed difference in vi between +B x B( , )x y and B B( , )x y
depends on how much of the strain volume is traversed by the stencil.
In this case, the difference for vx is xxx traversed. Using this, we compute a
forcing term for strain volumes in a manner similar to that used to
compute Eq. (4), giving

= +f x µ x| | / .x B B xx B x B, traversed
2 ,

2
x y x y (5)

Comparing this with Eq. (4), the only difference is replacing sx with
xxx traversed. This means that after computing xij

j
traversed for all of the

strain volumes, we can reuse all of the machinery for adaptive multigrid
solutions that we previously employed for dislocations.

For testing our implementation, we start with the analytic solution
for a cuboid aligned with the surface (Lambert and Barbot, 2016;
Barbot et al., 2017). Fig. 2 shows the cuboid, constructed out of 6 tet-
rahedra, and the computed solution for this arrangement. Table 1 de-
monstrates the convergence of the error in vx. We also implement
cuboids directly, and the solutions are identical to the solutions of cu-
boids made up of tetrahedra.

To test more complicated volumes with variable moduli, we create a
model using one of the tetrahedra from Fig. 2. Fig. 3 shows the di-
mensions of the tetrahedra, and Fig. 4 shows a solution for the stress.
We do not have an analytic solution for this setup, but we can ap-
proximate a tetrahedral strain volume with a number of small trian-
gular faults as in Fig. 3. This approach works very well at coarse re-
solution. At higher resolution, the mesh can resolve the spaces between
the faults, so the details start to differ more significantly. Table 2 de-
monstrates that the two methods converge as the number of faults in-
creases. This gives us some confidence in the correctness of our im-
plementation of strain volumes with heterogeneous elasticity.

3. The 2015 Mw 7.8 Gorkha, Nepal earthquake

As an illustration of the relevance and performance of the proposed
modeling approach, we model the initial post-seismic relaxation of the
2015 Mw 7.8 Gorkha, Nepal earthquake to incorporate hetergeneous
material properties. This earthquake (Avouac et al., 2015; Galetzka
et al., 2015; Elliott et al., 2016) took place on the Main Himalayan
Front, a megathrust that separates the Indian and Eurasian plates
(Tapponnier et al., 1986). The main shock was followed by a detectable
transient deformation (Wang and Fialko, 2015; Gualandi et al., 2015)
that was compatible with calculations of accelerated fault slip in the

Table 1
The norm of the error of vx for a computed solution of a
cuboid strain volume as a function of grid spacing h, where

v v v( ) max|( ) ( ) |x x xcomputed analytic . The strain volume has
shear strain components = = 1600LH HL and dimensions

=L 0.50, =W 0.25, =H 0.08. The moduli are constant
( = =µ 1). We set the boundary conditions (normal Dirichlet
and shear stress) from the analytic solution in (Lambert and
Barbot, 2016; Barbot et al., 2017). The displacement is regular,
so the convergence is uneven but monotonic.

h v( )x

0.1 26.54
0.05 3.191
0.025 1.545
0.0125 1.222
0.00625 0.4033

Fig. 3. Dimensions of the single tetrahedra used for testing variable moduli in
strain volumes. To verify the implementation, we also approximate the strain
volume with a large number of triangular faults distributed along the H axis.
The shaded triangle is a representative single fault. So the triangular faults start
out as big as the side of the tetrahedra and then converge to a single point.

Fig. 4. A cutout of the invariant of the scaled deviatoric stress
=J ( /3)/2ij ji ii jj2 of a computed solution for a single tetrahedral strain

volume. The equivalent resolution of the finest level is × ×64 64 64. The tet-
rahedra is the same as one of the tetrahedra making up the block in Fig. 2, and
has a single non-zero shear strain component = 1600LH . The moduli are not
uniform, but set to = + +µ µ x y3 50 , = +x y2 70 , where =µ 100 and

= 100 . The boundary conditions are zero normal displacement and zero stress.
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down-dip extension of the rupture and viscoelastic flow in the lower
crust of Southern Tibet (Zhao et al., 2017). Our goal is to partially re-
plicate these calculations by computing the instantaneous velocity in-
duced by viscoelastic flow in the lower crust of the down-going plate.
This calculation in the heterogeneous Earth has not been possible
without constructing complicated meshes.

To do this, we first use Gamra to compute the stresses caused by the
initial earthquake using the realistic slip model from (Qiu et al., 2016)
(Fig. 5). We set the elastic moduli using the spherically symmetric 1D
Preliminary Reference Earth Model (PREM) (Dziewoński and Anderson,
1981). Other than a straightforward extension of Gamra to handle tri-
angular patches, this is an application of the algorithm described in a
previous paper (Landry and Barbot, 2016).

This gives us a stress distribution throughout the bulk. This stress
causes viscoelastic flow in the lower crust. We model the lower crust as
a ramp, centered on the Main Himalayan Front, that dives from 20 to
40 km down to 50–70 km (Cattin and Avouac, 2000). We discretize this
ramp using 2304 cuboids, each × ×15 15 5 km. Dividing the computed
stress by an assumed viscosity of 1020 Pa s gives us an instantaneous
strain rate on each cuboid.

Using these strain rate cuboids as input, we use Gamra again, but
this time computing the instantaneous strain rate in the bulk (Fig. 6).
The solution encompasses a box × ×600 600 300 km. The boundary
conditions on the side and bottom are free slip: zero shear stress rate

and zero normal velocity. The boundary conditions on the top are free
surface: zero shear velocity and zero normal stress rate.

The adapted mesh ranges from a resolution of 9300m down to
146m. This is equivalent to a fixed resolution of × ×4096 4096 2048.
We set the refinement criteria to refine when the difference between
solutions in the induced velocity at different levels of refinement error
is greater than 10 11 cm/s. This is about 20 times smaller than the error
due to the boundaries being only 300 km away. A uniform mesh would
require about ×3 1010 elements, but the adapted mesh only requires

×6 107 elements.
In comparison with our previous work with faults made up of 2D

surfaces, viscoelastic deformation occurs at a greater depth and is more
distributed. The resulting strain rate is more diffuse, requiring relatively
more mesh refinement over a larger volume. The viscoelastic model
took 26 h to solve on a Dell R720 with 16 physical cores (Intel Xeon
CPU ES-2670).

4. Conclusions and future work

We have demonstrated that we can robustly and accurately model
arbitrary distributions of strain in tetrahedral and cuboidal volumes
embedded in a hetergeneous half space. A particular advantage of the
adaptive mesh is that computing the velocity field due to any single
strain volume is faster than for the overall lower crust model, because
the mesh can remain coarse far away from the source. This makes the
approach well suited for the calculation of elasto-static Green's func-
tions for localized (e.g., faulting) and distributed (e.g., viscoelastic)
deformation.

While the approach is sufficient for a large class of problems, there
are still some significant limitations. Topography can play a major in-
fluence on the surface displacements when there are large topographic
gradients or if the deformation source is shallow (such as during vol-
canic unrest (Cayol and Cornet, 1998; Williams and Wadge, 2000) or
underground explosions (Wang et al., 2018)). In addition, the effect of
the Earth's curvature can play an important role for long-wavelength
deformation (Pollitz, 1996). Also, coupling of deformation with the
gravity field (Pollitz, 1996) is detectable for particularly large earth-
quakes (Han et al., 2006, 2014; Vallée et al., 2017). These areas will be
the focus of future work.

Table 2
The norm of the difference in vx between solutions that use a
tetrahedral strain volume directly and one approximated with N
small triangular faults. The setup is the same as in Fig. 4. The
triangular faults are evenly distributed along the width
( =H 0.08) as shown in Fig. 3. The slip on each triangular fault is

× H N/LH .

N v( )x

128 0.4129
256 0.1645
512 0.0750
1024 0.0520

Fig. 5. A cutout of the input slip and computed displacement for the 2015 Mw 7.8 Gorkha, Nepal earthquake. The scale of the model is marked in km, and the
political boundaries of Nepal are superimposed for reference.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.cageo.2019.01.001.

Computer code availability

The algorithms described in this paper are implemented in Gamra
(Landry and Barbot, 2016), which is available at https://bitbucket.org/
wlandry/gamra. Gamra is written in C++, uses MPI for parallelism, and
depends on a number of packages: HDF5 (The HDF Group, 2000–2010),
SAMRAI (Hornung and Kohn, 2002; Hornung et al., 2006; The SAMRAI
Team, 1997–2017), FTensor (Landry, 2003; Landry and Sacristan,
2001–2017), libokada (Landry, 2013–2017), muparser (Berg, 2014),
and Boost (Boost Authors, 2003–2018). Gamra runs on everything from
laptops to supercomputers. While Gamra is still under active develop-
ment, the version associated with this paper has the Mercurial (The
Mercurial Team, 2005–2018) changeset ID.

b2d412042fb39cf780ccce431bfb4f476ac74bd7.
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