
Scaling SDPB Up and Down

Walter Landry
wlandry@caltech.edu

https://groups.google.com/forum/#!forum
 /bootstrap-collaboration-software

The Bootstrap and
Semidefinite Programs

• The conformal bootstrap can be formulated

 in terms of a semidefinite program.

• Semidefinite programs are generic math

 problems that occurs in many branchs of

 science and engineering.

• Existing, off-the shelf solver implementations

 exist in a variety of environments

 • Matlab, Mathematica, C, Python, ...

Why SDPB?
• Bootstrap calculations

can require extreme

numerical precision and

computational resources.

• Ising computations ran for weeks.

• SDPB is a solver optimized for bootstrapping.

• Open-source

• Arbitrary precision

• Heavily parallelized

0.51805 0.5181 0.51815 0.5182 0.51825 0.5183 0.51835
1.4115

1.412

1.4125

1.413

1.4135

1.414

Parallelizing Linear Algebra
• Most of what takes time in SDPB is linear

algebra operations on independent blocks of

matrices.

• The results of these independent operations

are combined into a single, comparatively

small, global matrix Q.

• These independent operations can be run

on different cores.

Parallelization with
• SDPB was initially parallelized with OpenMP

• OpenMP is very easy to

use, but it relies upon

a global view of memory.

• Works on single nodes

up to ~20 cores.

• Global view of memory

quickly stops working

beyond a single node.

Parallelism with
• SDPB has been enhanced to use MPI

(Message Passing Interface).

• MPI works by passing messages

between cores.

• This works far better

than OpenMP on

supercomputers.

• It required extensive

restructuring of the code.

Timing Runs
• Part of the restructuring is

 that we now have to

 explicitly assign these

 block computations to

 specific cores.

• Doing this well requires measuring how long

 it takes to run calculations for each block.

• Trying to derive the timings from first

 principles results in terrible performance.

Recent Work
• Automatic Timing

• Fake Primal Fix

• Faster Input

• Hot-starting and text checkpoints

• Installations

• Memory Use

• Scalar Blocks

• Spectrum Extraction

• Proposals

Automatic Timing
• SDPB now automatically performs a

 timing run.

• It is pretty transparent to the user.

 • No one asks me about timing runs

 anymore.

Fake Primal Solution
• There is a bug in the original,

 SDPB-OpenMP implementation

 of the primal error

• Paper says:

• Implementation was:

• Usually it makes no difference

 • SDPB-MPI now reports both

 P and p, but it uses the full

 primalError for deciding when to stop.

Faster Input
• XML : pvm2sdp

 • Now fully parallelized

• SDP in Mathematica: sdp2input

 • Directly generates SDPB

 input files.

 • 16 times faster than SDPB.m

 on 28 cores

 • Enables some people to work without

 Mathematica (not all clusters have it).

Hot-starting is Fully Supported
• Allows you to start a new calculation with

 an older solution

• Can reduce the number of iterations by a

 factor of 10.

Text Checkpoints
• Allows you to add to or modify an existing

 solution for a new problem.

• Portable across machines

• Not strictly bitwise identical.

 • The last bit can be different.

 • This comes from a limitation in the

 underlying GMP library.

 • It is unlikely to matter.

Easier Installation
• Better autodection of libraries

• No unnecessary dependencies.

Installed Everywhere

Easiest Option
• For smaller runs on your laptop or desktop

 Docker (Windows, Mac, Linux) or

 Singularity (Linux: recommended)

• Download and Run

• Pretty efficient and uses all cores.

 • IAS admins used Singularity for their install

 on the Helios cluster.

• Instructions in the repository
https://github.com/davidsd/sdpb/blob/master/docs/Docker.md
https://github.com/davidsd/sdpb/blob/master/docs/Singularity.md

Much Better Memory Use
• Memory use is dominated by many cores

 having their own copy of their contribution

 to the matrix Q.

• Q is symmetric, so we now explicitly

 deallocate half of it.

 • The underlying parallel linear

 algebra library, Elemental, is

 not accustomed to this, so we

 have to be a bit careful.

procGranularity
• Added the option procGranularity

• Spreads the local contribution to Q across

 more cores

• A bit slower, so only use if desperate

Synchronizing Q
• The local contributions to Q are summed and

 then distributed to a global Q with the low

 level routine MPI_Reduce_scatter.

• MPI_Reduce_scatter requires an additional

 copy of Q on each core.

 • Reimplemented to remove these copies

• With procGranularity, the memory overhead

 compared to SDPB-OpenMP should now be

 minimal.

Q Caveats
• It is not as fast for large core counts.

 • Factor of 2-3 for O(2), n_max=18

 with 448 cores at Yale

• However, you would only use large core

 counts for large problems.

• Previously, you would have a hard time

 fitting your large problem on the

 machine at all.

 • O(2), n_max=22 did not fit on Comet

Scaling on Large Machines

Memory Use

O(2) Remarks
• The O(2) project has been an

 excellent driver of progress for SDPB.

• It generated large, concrete benchmarks

 that people definitely wanted to solve.

• It highlighted bottlenecks when performing

 a complete bootstrap calculation,

 motivating improvements to block

 generation (scalar_blocks) and conversion

 from Mathematica SDP's to input (sdp2input)

Scalar Blocks
• Replaces Mathematica block generation

• Written in C++

• 111 times faster on 28 cores

• Available in the and images.

https://gitlab.com/bootstrapcollaboration/scalar_blocks

Spectrum Extraction
• Python script to extract the spectrum from

 the SDPB output

• Updated for new output format

• Clarified dependencies and made to work

 with python 2 or 3

• Also available in the and images.

https://gitlab.com/bootstrapcollaboration/spectrum-extraction

• XSEDE is an NSF funded clearinghouse for

 supercomputer time at different centers.

• We wrote a proposal for the

 O(2) project for 5 million

 hours on the SDSC Comet

 cluster.

• Awarded 3 million hours

• Received 1.2 million hours

• Used up 200,000 hours in a few days

Proposal

Cannon Cluster Proposal
• Harvard is standing up Cannon, a new

 cluster with 30,000 cores.

• They are looking for users who can

 thoroughly exercise the machine.

 • Science would be nice, but is not the driver

• Request for Proposals: Up to 3 days of

 compute time on the whole cluster.

• We submitted a proposal for ~1 million

 hours for more O(2) work.

Ongoing Work
• Scaling

• Precision

Better Scaling
• The work so far has pushed the scalability

 of SDPB from ~20 cores to ~300.

• We have run jobs up to 768 cores.

• The rule of thumb is that each improvement

 by a factor of 10 takes significant effort.

• The next step will require careful

 benchmarking on large machines.

Why Such High Precision?
• I will be looking at a small stress tensor

 example. It seems non-trivial enough to

 be useful.

• You might expect to need only to resolve

 • The error threshold:

 • The duality gap between the primal

 and dual solutions:

• In practice, we need much, much

 higher precision.

What Breaks?
• The first thing that breaks when reducing

 precision is when solving

• S has a block structure made up of

 symmetric positive-definite matrices.

• We use a Schur complement method, which

 involves inverting S first.

S is Ill-Conditioned
• When precision is low, S is no longer

 numerically positive.

• This is because S has a very bad condition

 number:

• This happens immediately, well before we

 do any real calculations.

Bad Basis
• By default, we evaluate functions at

 the roots of Laguerre polynomials.

• Laguerre polynomials

 mimic exponentials,

 but the function we

 are approximating

 is well behaved

 over the domain.
-10

-5

0

5

10

15

20

-5 0 5 10 15 20

Laguerre Polynomials

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

L
n
(x
)

x

Chebyshev Polynomials
• Chebyshev polynomials are very well

 behaved in their domain.

• We tried mapping the

 Chebyshev roots to the

 same interval.

• Evaluating functions at

 these new points yields a

 dramatic improvement in

 the condition number of S:

Not the Solution
• Unfortunately, as SDPB

 converges on a solution,

 S again becomes very,

 very ill-conditioned:

Eigenvalue Spectrum of S

Eigenvalue Spectrum
• The regular structure is from each of the

 blocks of S having their own range of

 eigenvalues.

• The eigenvalues smoothly vary from

 miniscule to gigantic. There is no natural

 break.

Eigenvector Decomposition
• If we decompose and into

 eigenvectors of S, it turns out that:

• This implies

• But lives in a different space and at this

 point in the calculation, after a dual jump, is

 essentially zero.

Small Differences - Big Problems
• The scaling eventually breaks down at small

 , but there are still many cancellations over

 a large range of .

• It does mean that we can not just ignore

 small eigenvalues.

• So there is still more to understand.

New Work
• Gateways

• Cloud

• Job Management

Gateway
• A web interface to SDPB

 • Simple pointy-clicky

 • Scriptable (https POST)

• You upload input files.

• The Gateway submits these

 files to a supercomputer.

• You check progress from time

 to time.

• When finished, you collect the results

Gateway Users
• This removes the need to understand

 supercomputers in order to do large

 calculations.

• Even for those who do understand them,

 there is no need to get any complex control

 software running there.

 • For example, Mathematica is not available

 on XSEDE

Gateway Implementation
• is very interested in giving away

 free time for gateways.

 • I have implemented a gateway with them

 in the past (seismology simulations)

 • I have also run high traffic web sites with

 scientific users.

• We would essentially become a

 mini-funding agency, giving out SDPB time.

• Requires a committee to vet applications

Scaling to the
• Many different, large providers

• You can make use of enormous

 compute power.

 • Western Digital burned 8 million

 core-hours in 8 hours on hard

 drive simulations.

• Caltech seriously considered using

 the cloud instead of building

 their own supercomputer.

Cloud Details: $$$
• It costs serious money, but sometimes they

 give away time for free

• Compute is cheap-ish: 2-3 cents/core-hour

 • The Western Digital runs cost $137,307

• Storage is not cheap: ~2 cents/GB-month

• Transferring data into the cloud is free.

 • Getting data back out is not: ~9 cents/GB

• Good match for SDPB

 • long calculations and small outputs

Cloud Implementation
• Smaller, 1-node jobs may already work

 with Docker?

• Larger jobs require more thorough

 investigation and performance testing.

 • AWS ParallelCluster

 • No Infiniband. Maybe EFA is not terrible?

 • Azure Batch

 • Requires Intel compiler?

 • Not as big a market, so fewer choices

Managing Computations
• Assuming that all of these resources are

 available, we still need a way to manage

 all of the separate computations that

 combine into a single result.

• Existing approaches use a variation of

 Mathematica scripts or Haskell programs.

• We should figure out what is common to

 all of these approaches and automate that.

