Scaling SDPB Up and Down

Walter Landry
wlandry@caltech.edu

https://groups.google.com/forum/#!forum
/bootstrap-collaboration-software

Caltech

The Bootstrap and
Semidefinite Programs

 The conformal bootstrap can be formulated
In terms of a semidefinite program.

 Semidefinite programs are generic math
problems that occurs in many branchs of
science and engineering.

e Existing, off-the shelf solver implementations
exist in a variety of environments
 Matlab, Mathematica, C, Python, ...

Why SDPB?

1414}

* Bootstrap calculations |
can require extreme
numerical precision and =
computational resources.]Oggo o

* |sing computations ran for weeks.
« SDPB is a solver optimized for bootstrapping.
e Open-source
 Arbitrary precision
 Heavily parallelized

Parallelizing Linear Algebra

 Most of what takes time in SDPB is linear
algebra operations on independent blocks of
matrices.

 The results of these independent operations
are combined into a single, comparatively
small, global matrix Q.

* These independent operations can be run
on different cores.

Parallelization with OpeniVIP

« SDPB was initially parallelized with OpenMP
e OpenMP iIs very easy to

use, but it relies upon
a global view of memory.
 Works on single nodes
up to ~20 cores.
 Global view of memory
quickly stops working
beyond a single node.

Parallelism with 'MP'

SDPB has been enhanced to use MPI
(Message Passing Interface).
MPIl works by passing messages

between cores. ~
This works far better

than OpenMP on
supercomputers.

It required extensive
restructuring of the code.

Timing Runs

* Part of the restructuring Is [
that we now have to o
explicitly assign these
block computations to
specific cores. I 1

 Doing this well requires measuring how long
It takes to run calculations for each block.

* Trying to derive the timings from first
principles results in terrible performance.

’/,v' ,J-';,'»l ' ' \\
505 LTI
o Sy

v .

Recent Work

 Automatic Timing

 Fake Primal Fix

e Faster Input

 Hot-starting and text checkpoints
e |nstallations

* Memory Use

e Scalar Blocks

e Spectrum Extraction

* Proposals

Automatic Timing

« SDPB now automatically performs a
timing run.
e |t Is pretty transparent to the user.
* No one asks me about timing runs
anymore.

Fake Primal Solution

* There is a bug in the original,
SDPB-OpenMP implementation
of the primal error

e Paper says: primal Error = max {|pi|, |Pij[}

* Implementation was: primalError = max {|P;j|}

* Usually it makes no difference —.

. SDPB-MPI now reports both &%

P and p, but it uses the full

primalError for deciding when to stop.

Faster Input

e XML : pvm2sdp
 Now fully parallelized
 SDP in Mathematica: sdp2input
e Directly generates SDPB
input files.
16 times faster than SDPB.m
on 28 cores
 Enables some people to work without
Mathematica (not all clusters have it).

<xml />

Hot-starting is Fully Supported

* Allows you to start a new calculation with
an older solution

e Can reduce the number of iterations by a
factor of 10.

Text Checkpoints

* Allows you to add to or modify an existing
solution for a new problem.
 Portable across machines
 Not strictly bitwise identical.
 The last bit can be different.
e This comes from a limitation in the
underlying GMP library.
* |t Is unlikely to matter.

Easier Installation

e Better autodection of libraries
* NO unnecessary dependencies.

Installed Everywhere

Caltech EPFL

SDSC

SAN DIEGO SUPERCOMPUTER CENTER

00205

S
N
§‘\\
=2
X

-

L{)

0/

[4
"y
?
'

Easiest Option

For smaller runs on your laptop or desktop
% Docker (Windows, Mac, Linux) or

(SJSinguIarity (Linux: recommended)

Download and Run

Pretty efficient and uses all cores.

e |AS admins used Singularity for their install
on the Helios cluster.

Instructions in the repository
https://github.com/davidsd/sdpb/blob/master/docs/Docker.md
https://github.com/davidsd/sdpb/blob/master/docs/Singularity.md

Much Better Memory Use

e Memory use is dominated by many cores
having their own copy of their contribution
to the matrix Q.

* Q Is symmetric, so we now explicitly
deallocate half of it.
 The underlying parallel linear

algebra library, Elemental, is
not accustomed to this, so we
have to be a bit careful.

procGranularity

 Added the option procGranularity

 Spreads the local contribution to Q across
more cores

* A bit slower, so only use if desperate

Synchronizing Q
 The local contributions to Q are summed and
then distributed to a global Q with the low
level routine MPI Reduce scatter.
* MPlI Reduce scatter requires an additional
copy of Q on each core.

e Reimplemented to remove these copies
 With procGranularity, the memory overhead
compared to SDPB-OpenMP should now be

minimal.

Q Caveats

e |t Is not as fast for large core counts.
* Factor of 2-3 for O(2), n max=18

with 448 cores at Yale

e However, you would only use large core
counts for large problems.

* Previously, you would have a hard time
fitting your large problem on the
machine at all.

* O(2), n_max=22 did not fit on Comet

Scaling on Large Machines

Time for Second lteration

*
11 &
\\\\ ‘
5 bt ...
50, e e
)
c _ Y -....... V'S
= 0.1
| -#- Ising: OpenMP
_ Ising: MPI
] =- 0(2): OpenMP
-4 0(2): MPI
10 100

Cores

200

e

=
~
Ul

Max Memory (GiB)/Nod

N
Ul

Memory Use

e S = B
N O NuU
oo O U1 O

Ul
<

Cores

’:_ -+- |sing: OpenMP
Ising: MPI
-+= 0(2): OpenMP
4= 0O(2): MPI
”;.. -
.
0 100 200 300 400

O(2) Remarks

* The O(2) project has been an
excellent driver of progress for SDPB.

* It generated large, concrete benchmarks
that people definitely wanted to solve.

It highlighted bottlenecks when performing
a complete bootstrap calculation,
motivating improvements to block
generation (scalar blocks) and conversion
from Mathematica SDP's to input (sdp2input)

Scalar Blocks

 Replaces Mathematica block generation
e Written in C++

e 111 times faster on 28 cores

e Available in the #* and CSJ images.

docker

https://gitlab.com/bootstrapcollaboration/scalar_blocks

Spectrum Extraction

 Python script to extract the spectrum from
the SDPB output

 Updated for new output format

e Clarified dependencies and made to work
with python 2 or 3

e Also available in the # and CSJ images.

https://gitlab.com/bootstrapcollaboration/spectrum-extraction

) ¢=I3=]3 Proposal

« XSEDE is an NSF funded clearinghouse for
supercomputer time at different centers.

* We wrote a proposal for the g
0(2) project for 5 million [WAISS
hours on the SDSC Comet
cluster.

e Awarded 3 million hours

e Recelved 1.2 million hours

e Used up 200,000 hours in a few days

Cannon Cluster Proposal

 Harvard is standing up Cannon, a hew
cluster with 30,000 cores.

* They are looking for users who can
thoroughly exercise the machine.
e Science would be nice, but is not the driver

 Request for Proposals: Up to 3 days of
compute time on the whole cluster.

 We submitted a proposal for ~1 million
hours for more O(2) work.

Ongoing Work
e Scaling
* Precision

Better Scaling

* The work so far has pushed the scalability
of SDPB from ~20 cores to ~300.

 We have run jobs up to 768 cores.

 The rule of thumb iIs that each improvement
by a factor of 10 takes significant effort.

* The next step will require careful
benchmarking on large machines.

Why Such High Precision?

* | will be looking at a small stress tensor
example. It seems non-trivial enough to
be useful.

 You might expect to need only to resolve
e The error threshold: 10—4Y
 The duality gap between the primal

and dual solutions: 103

e |n practice, we need much, much

higher precision.

What Breaks?

* The first thing that breaks when reducing
precision is when solving

S —-B dr \ [73
BY 0 dy)\ 1y
S has a block structure made up of
symmetric positive-definite matrices.

e We use a Schur complement method, which
Involves inverting S first.

S i1s llI-Conditioned

 When precision is low, S i1s no longer
numerically positive.

 This is because S has a very bad condition
number: 1018Y

 This happens immediately, well before we
do any real calculations.

Bad Basis

By default, we evaluate functions at
the roots of Laguerre polynomials.

 Laguerre polynomials
mimic exponentials, |\ | -
but the function we " g

are approximating ~
Is well behaved

over the domain.

Chebyshev Polynomials

e Chebyshev polynomials are very weII
behaved in their domain. & —~———

 We tried mapping the
Chebyshev roots to the
same interval.

 Evaluating functions at
these new points yields a
dramatic improvement in
the condition number of S:].O

Not the Solution

 Unfortunately, as SDPB
converges on a solution,

S again becomes very, 1 0400

very ill-conditioned:

00000000
— N O 1nwn o w©v 9+ @ ©
11111

S o o o o
— — — —
an|eAuably

Eigenvalue Spectrum

 The reqular structure is from each of the
blocks of S having their own range of
eigenvalues.

* The eigenvalues smoothly vary from
miniscule to gigantic. There is no natural
break.

Eigenvector Decomposition

e If we decompose dx and B into
eigenvectors of S, it turns out that:

dil?f,; X)\i_l/Q BZ’ X)\7;1/3

e This implies 7, = B - dz o< \; /"

* But , lives in a different space and at this
point in the calculation, after a dual jump, Is
essentially zero.

Small Differences - Big Problems

 The scaling eventually breaks down at small
A;, but there are still many cancellations over
a large range of A,

e |t does mean that we can not just ignore
small eigenvalues.

e So there is still more to understand.

New Work

» Gateways
 Cloud
* Job Management

Gateway H’
e A web interface to SDPB

* Simple pointy-clicky T l
e Scriptable (https POST) / AEACHE
* You upload input files. T l

» The Gateway submits these
files to a supercomputer.

* You check progress from time o
to time. L5

 When finished, you collect the results

Gateway Users

 This removes the need to understand
supercomputers in order to do large
calculations.

 Even for those who do understand them,
there is no need to get any complex control
software running there.
 For example, Mathematica is not available

on XSEDE

Gateway Implementation
« NS13m]Sis very interested in giving away
free time for gateways.
* | have implemented a gateway with them
in the past (seismology simulations)
* | have also run high traffic web sites with
scientific users.
 We would essentially become a
mini-funding agency, giving out SDPB time.
 Requires a committee to vet applications

Scaling to the
« Many different, large providers aWS

e YOU can make use of enormous
compute power.

 Western Digital burned 8 million
core-hours in 8 hours on hard
drive simulations.
e Caltech seriously considered using
the cloud instead of building
their own supercomputer.

Cloud Details: $$%

* |t costs serious money, but sometimes they
give away time for free

e Compute is cheap-ish: 2-3 cents/core-hour
e The Western Digital runs cost $137,307

e Storage is not cheap: ~2 cents/GB-month

* Transferring data into the cloud is free.
 Getting data back out is not: ~9 cents/GB

e Good match for SDPB
* long calculations and small outputs

Cloud Implementation

 Smaller, 1-node jobs may already work
with Docker?

e Larger jobs require more thorough

iInvestigation and performance testing.
 AWS ParallelCluster

 No Infiniband. Maybe EFA iIs not terrible?
 Azure Batch

 Requires Intel compiler?
 Not as big a market, so fewer choices

Managing Computations

« Assuming that all of these resources are
available, we still need a way to manage
all of the separate computations that
combine into a single result.

 EXisting approaches use a variation of
Mathematica scripts or Haskell programs.

 We should figure out what is common to
all of these approaches and automate that.

