Restricted Geometry Support in ADQL

Walter Landry

TAP Geometry Backends at @Etrera

*|RSA implements geometry for our TAP services
with 2 different back ends

TAP Geometry Backends at \

*|RSA implements geometry for our TAP services
with 2 different back ends

eEvery other TAP service with geometry support
uses pgSphere

HTM Implementation

*HTM gives a unigue id for each triangle

*For our catalogs, which consist of (ra,dec)
pairs, we add the HTM id and Xx,y,z coordinates.

*Then we rewrite queries to use those HTM id's
and coordinates.

Rewriting Queries to use HTM

Contains(Point(ra,dec),
Circle(ra in,dec 1in,r 1n))=1

v

((htm>htm 0 and htm<htm 1)
or (htm>htm 2 and htm<htm 3)
or (htm>htm 4 and htm<htm 5)
or (htm htm 6 and htm<htm 7))
and power(x-x in,2) + power(y-y 1in,2)
+ power(z-z 1n,2)
< 4*power(sin(r in/2),2)

Rewriting Queries to use HTM

*This helps the database query optimizer run
the query efficiently.

|t does mean that we need the shape at parse

time.

Shape parameters specified inline (circle(13.5, -12.7, 0.01))

Shape parameters from uploaded tables (mytable.ra, mytable.dec)

Shapes in uploaded tables vary from row to row using REGION strings

Shape parameters come from a subquery

zZ 2| <X| <

Enables non-SQL backends

*This approach does not require stored
procedures that interact with SQL.

Enables non-SQL backends

*This approach does not require stored
procedures that interact with SQL.

*With a specialized spatial database, you can
run the geometric queries first.

Enables non-SQL backends

*This approach does not require stored
procedures that interact with SQL.

*With a specialized spatial database, you can
run the geometric queries first.

*Then pipe the results into a RDBMS (sqlite,
mysdl,...) and run the rest of the query.

Comparing this with

ObsCore use cases
*Full geometry query is not specified in
ObsCore standard.
*The following examples are from CADC.

http://www.cadc-cdda.hia-iha.nrc.cnrc.gc.ca/cvo/0bsCore

ObsCore A 1.1

SELECT * from 1ivoa.ObsCore
WHERE em min < 2.48e-10 and em max>2.48e-10

AND CONTAINS(POINT('ICRS',16,10),s region)=1
AND t exptime>10000

ObsCore A 1.1

SELECT * from 1ivoa.ObsCore
WHERE em min < 2.48e-10 and em max>2.48e-10

AND CONTAINS(POINT('ICRS',16,10),s region)=1
AND t exptime>10000 +

SELECT * from 1voa.ObsCore
WHERE CONTAINS(POINT('ICRS',16,10),s region)=1
AND (em min < 2.48e-10 and em max>2.48e-10

AND t exptime>10000)

ObsCore A 1.1

SELECT * from 1ivoa.ObsCore
WHERE em min < 2.48e-10 and em max>2.48e-10

AND CONTAINS(POINT('ICRS',16,10),s region)=1
AND t exptime>10000 +

SELECT * from 1ivoa.ObsCore
WHERE CONTAINS (POINT('ICRS',16, 1@)%@1
AND (em min < 2.48e-10 and em max>2. -

AND t exptime>10000)

ObsCore A 1.1

SELECT * from 1ivoa.ObsCore
WHERE em min < 2.48e-10 and em max>2.48e-10

AND CONTAINS(POINT('ICRS',16,10),s region)=1
AND t exptime>10000 +

SELECT * from 1ivoa.ObsCore
WHERE CONTAINS(POINT('ICRS',16,10),s region)=1
AND (em min < 2.48e-10 and em max>2.48e-10

AND t exptime>10000)

ObsCore A 1.2a

SELECT 1.*, x.dataproduct type,
FROM 1voa.ObsCore AS X
JOIN TAP UPLOAD.inputA as 1
ON CONTAINS(POINT('ICRS',i.ra,1.dec),
X.S region)=1
WHERE x.dataproduct type='image'
AND em min < 1.0e-8 and em max>5.0e-9

ObsCore A 1.2a

SELECT 1.*, x.dataproduct type,
FROM 1voa.ObsCore AS X
JOIN TAP UPLOAD.inputA as 1
ON CONTAINS(POINT('ICRS',i.ra,1.dec),
X.S region)=1
WHERE x.dataproduct type='1image'
AND em min < 1.0e-8 and em max>5.0e-9

ObsCore A 3.5

SELECT * FROM 1voa.ObsCore

WHERE dataproduct type='cube'
AND (em max-em min)>0.599585
AND 8.6696e-4 between em min and em max
AND SQRT(AREA(s region))/s resolution>=100

ObsCore A 3.5

SELECT * FROM 1ivoa.ObsCore

WHERE dataproduct type='cube'
AND (em max-em min)>0.599585
AND 8.6696e-4 hetween em min and em max
AND SQRT (AREA(s region))/s resolution>=100

ObsCore A 3.9

SELECT * FROM 1voa.ObsCore

WHERE CONTAINS(POINT('ICRS',ra((t max-t min)/2),
dec((t max-t min)/2),
S region)=1

Mostly compatible?

*This approach satisfies all of the listed use
cases.

*There may be valid use cases which are not
covered by this.

ADQL EBNF Modifications

<search condition>::=
{<predicate geometry function>
[AND <non geometry>]}
| {<non geometry>
[AND <predicate geometry function>]}

<non geometry>:.=
<left paren>
<old search condition>
<right paren>

Remove geometry from functions

<string value function>::=
<user defined function>
| <string geometry function>

<value expression>::=
<numeric value expression>
| <string value expression>
| <geometry value expression>

Simplify numeric geometric functions

<numeric geometric function>::=
<non predicate geometry function>

<area>: :=AREA <left paren>
<column region reference> <right paren>

e <column region reference> iIs a
<column reference> to a simple table
(no subqgueries) which must be a region with a
fixed type for all rows.

‘remove <distance>, <coordl>, <coord2>

Geometry Expression

<geometry value expression>::=
<column region reference>
| <geometry value function>

<coordinate>::= <upload column reference>
| [<signh>] <unsigned numeric literal>

e <upload column reference> is a column
In an uploaded table.

e <radius>, <box> sizes, and <region> strings are
similarly constrained.

Geometry Predicates

*This means that geometric shapes can only be
constructed from uploaded tables and literals.

Geometry Predicates

*This means that geometric shapes can only be
constructed from uploaded tables and literals.

Other tables already have appropriate regions
(e.g. POINT's for catalogs, POLYGON's for images)

Geometry Predicates

*This means that geometric shapes can only be
constructed from uploaded tables and literals.

Other tables already have appropriate regions
(e.g. POINT's for catalogs, POLYGON's for images)

|t strengthens the type system. You can not
accidently write CIRCLE('ICRS',dec,ra,r) for
built-in tables.

Geometry Predicates

*This means that geometric shapes can only be
constructed from uploaded tables and literals.
Other tables already have appropriate regions
(e.g. POINT's for catalogs, POLYGON's for images)
|t strengthens the type system. You can not
accidently write CIRCLE('ICRS',dec,ra,r) for
built-in tables.
Oddly enough, the current standard disallows
CIRCLE(a.point,a.r)
POLYGON(a.point0O,a.pointl,a.point2)

