
Restricted Geometry Support in ADQL

Walter Landry

TAP Geometry Backends at

•IRSA implements geometry for our TAP services
 with 2 different back ends

HTM

TAP Geometry Backends at

•IRSA implements geometry for our TAP services
 with 2 different back ends

HTM

•Every other TAP service with geometry support
 uses pgSphere

HTM Implementation

•HTM gives a unique id for each triangle
•For our catalogs, which consist of (ra,dec)
 pairs, we add the HTM id and x,y,z coordinates.
•Then we rewrite queries to use those HTM id's
 and coordinates.

Rewriting Queries to use HTM

Contains(Point(ra,dec),
 Circle(ra_in,dec_in,r_in))=1

((htm>htm_0 and htm<htm_1)
 or (htm>htm_2 and htm<htm_3)
 or (htm>htm_4 and htm<htm_5)
 or (htm_htm_6 and htm<htm_7))
and power(x-x_in,2) + power(y-y_in,2)
 + power(z-z_in,2)
 < 4*power(sin(r_in/2),2)

Rewriting Queries to use HTM

•This helps the database query optimizer run
 the query efficiently.
•It does mean that we need the shape at parse
 time.

Shape parameters from uploaded tables (mytable.ra, mytable.dec)

Shapes in uploaded tables vary from row to row using REGION strings

Shape parameters come from a subquery

Shape parameters specified inline (circle(13.5, -12.7, 0.01)) Y

N

Y

N

Enables non-SQL backends

•This approach does not require stored
 procedures that interact with SQL.

Enables non-SQL backends

•This approach does not require stored
 procedures that interact with SQL.
•With a specialized spatial database, you can
 run the geometric queries first.

Enables non-SQL backends

•This approach does not require stored
 procedures that interact with SQL.
•With a specialized spatial database, you can
 run the geometric queries first.
•Then pipe the results into a RDBMS (sqlite,
 mysql,...) and run the rest of the query.

Comparing this with
ObsCore use cases

•Full geometry query is not specified in
 ObsCore standard.
•The following examples are from CADC.

http://www.cadc-cdda.hia-iha.nrc.cnrc.gc.ca/cvo/ObsCore

ObsCore A 1.1
SELECT * from ivoa.ObsCore
WHERE em_min < 2.48e-10 and em_max>2.48e-10
AND CONTAINS(POINT('ICRS',16,10),s_region)=1
AND t_exptime>10000

SELECT * from ivoa.ObsCore
WHERE em_min < 2.48e-10 and em_max>2.48e-10
AND CONTAINS(POINT('ICRS',16,10),s_region)=1
AND t_exptime>10000

SELECT * from ivoa.ObsCore
WHERE CONTAINS(POINT('ICRS',16,10),s_region)=1
AND (em_min < 2.48e-10 and em_max>2.48e-10
 AND t_exptime>10000)

ObsCore A 1.1

SELECT * from ivoa.ObsCore
WHERE em_min < 2.48e-10 and em_max>2.48e-10
AND CONTAINS(POINT('ICRS',16,10),s_region)=1
AND t_exptime>10000

SELECT * from ivoa.ObsCore
WHERE CONTAINS(POINT('ICRS',16,10),s_region)=1
AND (em_min < 2.48e-10 and em_max>2.48e-10
 AND t_exptime>10000)

ObsCore A 1.1

SELECT * from ivoa.ObsCore
WHERE em_min < 2.48e-10 and em_max>2.48e-10
AND CONTAINS(POINT('ICRS',16,10),s_region)=1
AND t_exptime>10000

SELECT * from ivoa.ObsCore
WHERE CONTAINS(POINT('ICRS',16,10),s_region)=1
AND (em_min < 2.48e-10 and em_max>2.48e-10
 AND t_exptime>10000)

ObsCore A 1.1

ObsCore A 1.2a
SELECT i.*, x.dataproduct_type, ...
FROM ivoa.ObsCore AS x
 JOIN TAP_UPLOAD.inputA as i
 ON CONTAINS(POINT('ICRS',i.ra,i.dec),
 x.s_region)=1
WHERE x.dataproduct_type='image'
 AND em_min < 1.0e-8 and em_max>5.0e-9

ObsCore A 1.2a
SELECT i.*, x.dataproduct_type, ...
FROM ivoa.ObsCore AS x
 JOIN TAP_UPLOAD.inputA as i
 ON CONTAINS(POINT('ICRS',i.ra,i.dec),
 x.s_region)=1
WHERE x.dataproduct_type='image'
 AND em_min < 1.0e-8 and em_max>5.0e-9

ObsCore A 3.5
SELECT * FROM ivoa.ObsCore
WHERE dataproduct_type='cube'
 AND (em_max-em_min)>0.599585
 AND 8.6696e-4 between em_min and em_max
 AND SQRT(AREA(s_region))/s_resolution>=100

ObsCore A 3.5
SELECT * FROM ivoa.ObsCore
WHERE dataproduct_type='cube'
 AND (em_max-em_min)>0.599585
 AND 8.6696e-4 between em_min and em_max
 AND SQRT(AREA(s_region))/s_resolution>=100

ObsCore A 3.9
SELECT * FROM ivoa.ObsCore
WHERE CONTAINS(POINT('ICRS',ra((t_max-t_min)/2),
 dec((t_max-t_min)/2),
 s_region)=1

Mostly compatible?

•This approach satisfies all of the listed use
 cases.
•There may be valid use cases which are not
 covered by this.

ADQL EBNF Modifications

<search_condition>::=
 {<predicate_geometry_function>
 [AND <non_geometry>]}
 | {<non_geometry>
 [AND <predicate_geometry_function>]}

<non_geometry>::=
 <left_paren>
 <old_search_condition>
 <right_paren>

Remove geometry from functions

<string_value_function>::=
 <user_defined_function>
 | <string_geometry_function>

<value_expression>::=
 <numeric_value_expression>
 | <string_value_expression>
 | <geometry_value_expression>

Simplify numeric geometric functions

<numeric_geometric_function>::=
 <non_predicate_geometry_function>

<area>::=AREA <left_paren>
 <column_region_reference> <right_paren>

•<column_region_reference> is a
 <column_reference> to a simple table
 (no subqueries) which must be a region with a
 fixed type for all rows.
•remove <distance>, <coord1>, <coord2>

Geometry Expression

<geometry_value_expression>::=
 <column_region_reference>
 | <geometry_value_function>

<coordinate>::= <upload_column_reference>
 | [<sign>] <unsigned_numeric_literal>

•<upload_column_reference> is a column
 in an uploaded table.
•<radius>, <box> sizes, and <region> strings are
 similarly constrained.

Geometry Predicates
•This means that geometric shapes can only be
 constructed from uploaded tables and literals.

Geometry Predicates
•This means that geometric shapes can only be
 constructed from uploaded tables and literals.
•Other tables already have appropriate regions
 (e.g. POINT's for catalogs, POLYGON's for images)

Geometry Predicates
•This means that geometric shapes can only be
 constructed from uploaded tables and literals.
•Other tables already have appropriate regions
 (e.g. POINT's for catalogs, POLYGON's for images)
•It strengthens the type system. You can not
 accidently write CIRCLE('ICRS',dec,ra,r) for
 built-in tables.

Geometry Predicates
•This means that geometric shapes can only be
 constructed from uploaded tables and literals.
•Other tables already have appropriate regions
 (e.g. POINT's for catalogs, POLYGON's for images)
•It strengthens the type system. You can not
 accidently write CIRCLE('ICRS',dec,ra,r) for
 built-in tables.
•Oddly enough, the current standard disallows
 CIRCLE(a.point,a.r)
 POLYGON(a.point0,a.point1,a.point2)

